A Big RISC

Richard A. Blomseth, Capt., USAF
Masters Project Final Report

Computer Science Division
Department of Electrical Engineering and Compauter Science
University of California, Berkeley
Berkeley, CA #4720

ABSTRACT

Big RISC (BRISC) is a high-speed CPU designed with 100K ECL logic and
based on the RISC I architecture. Design, performance, and cost of BRISC s
presented. Performance is shown to be better than high end mainframes such as
the [BM 3081 and Amdahl 470V/8 on integer benchmarks written in C, Pascal
and LISP. The cost, conservatively estimated to be $132,400, is about the same
as 3 high end minicomputer such as the VAX-11/780. BRISC has a CPU cycle
time of 46 ms, providing s RISC [instruction execution rate ol greater than 15
MIPs.

BRISC is designed with a Structured Computer Aided Logic Design System
(SCALD) by Valid Legic Systems. An evaluation of the utility of SCALD for
computer design is also included.

July 18, 1983

———

The work reported herein was supported in part by Defease Advance Research Projects Ageacy (DoD) ARPA
Order No. 3303, Mositored by Naval Electroaic Sysem Commaad under Coatract No. N00039-81-K-0251, aad
the U.S. Department of Eaergy aader Contract DE-ATOS-76SF00034, Project Agreemeat DE-ASCS-T9ER 10358.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED

18 JUL 1983 2. REPORT TYPE 00-00-1983 to 00-00-1983
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Blg RISC 5h. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Big RISC (BRISC) isa high-speed CPU designed with 100K ECL logic and based on the RISC |

ar chitecture. Design, performance, and cost of BRISC is presented. Performanceis shown to be better than
high end mainframes such asthe IBM 3081 and Amdahl 470V/8 on integer benchmarkswritten in C,
Pascal and L1SP. The cost, conservatively estimated to be $132,400 is about the same as a high end
minicomputer such asthe VAX-11/780. BRISC hasa CPU cycletime of 46 ns, providinga RISC |
instruction execution rate of greater than 15 MIPs. BRISC isdesigned with a Structured Computer Aided
L ogic Design System (SCALD) by Valid L ogic Systems. An evaluation of the utility of SCALD for
computer design isalso included.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 89
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Richard A. Blomseth
Author

A Big RISC

Title

RESEARCE PROJECT .

Submitted to the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley,

to partial satisfaction of the requirements for the degree
of Master of Sciences, Plan II.

Anproval for the Report and Comprehensive Examination:
PP T .

Committee: < :‘)ﬁk' vx:%gtIkl)Lédlv‘\ , Research Adviser

Jaln (8 /G432
el

v
JUI\IJ D, HB& , Date

, Second Reader

Table of Contents

1. Introduction
1.1. RISC 1 Architecture

1.1.1. RISC I Instruction Set

1.1.2. Register File

1.2. Berkeley RISC Implementations

2. BRISC Design
2.1. Pipeline Timing

2.2, BRISC Hardware Design

2.2.1. Data Path

2.2.1.1. PCs AND ADDRESS ..

2.2.1.2. CACHE

2.2.1.3. REGISTER FILE

2.2.1.4. ALUPATH
2.2.1.5. SHIFTER PATH

2.2.1.8. SPECIAL REGISTERS

2.2.1.7. RESULT LATCH

2.2.2. Control

2.2.2.1. Control Hardware
2.2.2.9. Control ‘Microcode’

2.2.2.3. Support Processor

.........

3. Performance Analysis

3.1. BRISC Performance

3.1.1. CPU Speed
3.1.1.1. CPU Cycle Time

3.1.1.2. CPU Cycles Per Instruction
3.1.1.3. Design Changes

3.1.2. Memory Speed .

3.2. Beachmark Comparisons
4. Cost

5. Closing Remarks .
$.1. Comments on SCALD

§.1.1. SCALD Speed

5.1.2. Graphics Editor
5.1.3. Compiler

5.1.4. Timing Verifler
§.1.5. Simulator

5.1.6. Post Processor

[
ocoooommmqw».buwnuw

[-
12 = = O O O

-
[

BRRBIIRBERYIBITIS

5.2. Lessons Learned

5.3. Future Work

8. Conclusion
7. Acknowledgements

Appendix A. BRISC Instruction Set
Appeandix B. Commercial Cache Summary
Appendix C. Effective Cycle Time Calculation
Appendix D. BRISC Parts List

Appendix E. BRISC Drawings

Appendix F. DAPL Microcode Listings

gaey

A Big RISC

Richard A. Blomaseth, Capt., USAF
Masters Project Final Report
Compater Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720

1. Introduction

Even though microprocessors are now available with the power of previous years’ minicom-_ .
puters, and are expected to get faster, there will always be problems where even the fastest
microprocessors are not fast enough. This paper describes the design of BRISC (Big Reduced
Instruction Set Computer), a high performance 32-bit processor designed with discrete 100K ECL
logic. BRISC uses the same concepts used to speed up the RISC I microprocessor; 14 these con-

cepts include s simplified instruction set and overlapping register windows.

BRISC is designed with a Structured Computer-Aided Logic Design (SCALD) system. 1!
Most of the CPU design has been entered into the SCALD system and post processed for physical
design errors. The worst case logic path has been timing verified using SCALD to approximate
the CPU cycle time. Some simulation has been done (about 70% of the design) to verify func-
tional correctness of the CPU design.

This paper describes the design, performance and cost of BRISC. Performance and cost are
compared to other high performance computers to evaluate the usefulness of the RISC architec-
tare for high performance computer design. The rest of this section describes the RISC I architec-
tare and the Berkeley RISC implementations. RISC 1 architecture is described because BRISC
ases the RISC I architecture st the instruction set level.

1.1. RISC I Architecture

Fundamental to RISC architectares is the concept that frequent, time consuming tasks
should be done 33 fast as possible, and infrequent tasks may be done more slowly. RISC I is
designed to execute high level languages such as C and Pascal efficiently, so the RISC I instruc-
tion set concentrates on the most time consuming operations of high level languages. Two time
consuming operations optimized by the RISC I instruction set are: (1) procedure calls and returns,
that account for 40% of the time spent in traditional architectures; and (2), data references to
local scalar variables and constants, that account for over 60% of data references. !¢ RISC | is

.2

designed for integer programs; floating point operations are done in software and are therefore

significantly slower than integer operations.

The remainder of this section provides a brief introduction to the RISC I architecture. For
more information, the reader is referred to the RISC [Principles of Operation. ®

RISC 1 has two significant departures from traditional computer architectures. First is 3
small and simple instruction set; second is a large register file consisting of overlapping register

windows.

1.1.1‘ msc I In’trucﬁﬂn s‘t ~ .

The RISC 1 instruction set consists of 31 instructions and supports five addressing modes.
Three address modes — register, immediate and indexed — are supported directly by the instrue-
tion set. Two addressing modes — absolute and register indirect — may be synthesized from
indexed addressing. Only the LOAD and STORE instructions sccess the main memory, all other
instructions read and write registers. Most operations read two registers and write into 3 third.
Because of the register-to-register orieatation of the instruction set, RISC processors complete an
instruction nearly every memory cycle. LOAD and STORE instructions are the only exceptions and

require one or two extra cycles.

RISC/E added 23 instructions to the RISC I instraction set to support refative loads and
stores, increased access to the special registers, and sapport for the virtual memory. BRISC uses
the RISC/E instruction set. The BRISC instruction set is included in Appeadix A.

1.1.2. Register Flle

RISC 1 relies on maitiple sets or windows of 32-bit registers o speed up calls, returns, and

access to local variables. This collection of register windows is known as the regqister file.

BRISC contains a register fle consisting of 128 32-bit registers. Sixteen of these registers
(the register window) are available to a procedure at any one time, and a new set is allocated for
a CALL and deallocated for a RETURN. Memory sccesses are not required to save and restore the
return address or other registers as required by couventional architectures. Furthermore, move-
meat of data is not required for parameter passing because allocation and deallocation of registers
for cALL aad RETURN is done with overlapping windows. Overlapping register windows usually
allow the program's complete activation stack to remain in registers, so that the CPU references
fast registers, rather than slow main memory.

BRISC hss two sets of 123 registers, one set is active in user mode, the other is active in

system mode. RISC [registers epill into memory if the 128 register limit is exceeded. Tea of the
16 registers in a register window are shared by all windows in a register file and are known as the

global registers.

1.3. Berkeley RISC Implementations

Four RISC processors have beea designed at UC Berkeley since the project was started in
1980. Two of them are single chip NMOS designs (RISCs I and 1), and two are discrete logic
ECL designs (RISC/E and BRISC).

RISCI .-

RISC I is the first RISC designed at Berkeley. It was designed by five students in 6 months.

The 44,500 traosistor chip was fabricated using 4 micron NMOS technology, and is 10.3 x 7.74

mm (406 x 305 mils). Through the use of computer aided design tools, RISC I worked on first sil-

icon. Even though the chips work, they do not meet their design goal for speed. The design goal

for RISC I was a 400 ns cycle; RISC 1 runs with a 2000 ns cycle. Even at 2000 ns RISC Iruns C
programs faster than an 8 MHz 68000. 14

RISC I

RISC II was designed by two graduate students in two years and is a more refined processor
than RISC 1. Building on the success of RISC 1 in using computer aided design tools to design
chips that were logically correct, RISC II used a newer set of tools that included a program to
verify the speed of the chip (Crystal). 10 The longer design cycle and better tools resulted in 2
better circuit design and working chips with 75% more registers (138), 25% less ares (10.3 x 5.8
mm), and four times the speed (500 ns cycle time) of RISC L

RISC U uses a three stage pipeline 2s opposed to the two stage pipeline of RISC I. A simi-
lar three stage pipeline was subsequently used by RISC/E and BRISC. The three stage pipeline
is discussed in Section 2.1.

RISC/E

RISC /Extended (RISC/E) was a paper design of 3 10K ECL CPU and cache also started in
1980 to see il the RISC I concepts could be applied to a high performance discrete logic CPU. %
The result is the design for 3 fast CPU with a 75 ns cycle time consisting of 450 10K ECL parts.
The cache also has 3 cycle time of 75 ns and consista of 530 10K ECL parts.

BRISC

Big RISC (BRISC) continges the work started by RISC/E to verily the applicability of
RISC concepts to high performance computer design. Jef Deutsch and the aathor designed the
first version of BRISC during the Winter quarter of 1983. BRISC started as s transiation of the
10K ECL design of RISC/E to 100K ECL. Minor changes were made throughout the design to~ -
sccomodate differences between the 10K and 100K parts. The ALU, shifter, program counters,
and control logic were redesigned for increased speed and decreased parts count. Timing was kept
pearly ideatical to RISC/E.

The resuiting design from the Winter quarter consisted of 606 parts. The high part count
was due primarily to the lack of buffers in the SCALD library to prevent loading violations;
instead parts were replicated to obtain the desired drive. Simalation was completed on the ALU,
shifter and program counters, and post processing was started. Timing verification was not per-
formed becaase of bugs in the timing verider.

The anthor continued work oan BRISC daring the Spring quarter of 1983. BRISC was
redesigned to use baffers that were added to the SCALD library, and control was redesigned to
require fewer bits. The resulting design uses 332 parts. The BRISC equivaleat of microcode was
written for the arithmetic instructions, and simulation was started for the entire design. The tim-
ing verifier became available from Valid, so enough of the design was veriled to calculate the
cycle time. Post processing was completed for the entire design.

BRISC is faster than RISC/E (47 s vs. 75 ns) with fewer chips (332 vs. 530). 100K ECL is
a faster logic family thaa 10K ECL, but was not widely available whea the RISC/E project was
started (1980). The 100K ECL parts tend to have more functionality than 10K ECL parts, but
this functionality is boaght at the expease of more pins per package. Nearly all 100K ECL parts
bave 24 pins, whereas most 10K ECL parts have 18 pins.

The remainder of this paper describes the design, performance and cost of BRISC.

3. BRISC Design

BRISC's design is based on the three stage pipeline developed by Lloyd Dickman that was
used by RISC [and RISC/E. This section describes the pipeline timing and the hardware design
of BRISC.

3.1. Plpeline Timing

BRISC pipeline timing will caly be summarized here, 3 more complete description may be
foand in the RISC/E design stady. § BRISC uses a two phase, nop-overlapping clock. Most
instructions take three cycles, or six phases, to execute. The CPU is pipelined so that three

a5

instructions are being acted on simultaneously, allowing instructions to issue and complete at a
rate approaching ome per cycle. Figure 1 describes the six phases of a typical instruction, and
Figure 2 shows three instructions passing through the pipeline. The pipeline is designed to make
maximum use of key resources — the cache, register file, and ALU - and to minimize conteation- -
for these resources. The pipeline is also designed to not require pipeline flushes, all instructions
entering the pipeline go through to completion unless externally interrupted.

Most instructions follow the pipeline timing shown in Figures 1 and 2 so that no complex
pipeline interiocks are required. Evea instructions that receive special treatment in traditional
pipelines - such as CALL, JUMP, and RETURN - do not affect pipeline timing in BRISC and follow

the same basic three cycle timing.

Only the LOAD and STORE instructions require more than three cycles to execute. One extra
cycle is required for the memory access; 3 second extra cycle is required for & and 16-bit loads
and stores to align the memory data with the register file using the shifter. The second extra
cycle is not required for LOAD WORD and STORE WORD because 32-bit words are always aligned

with memory.

2.3. BRISC Hardware Design

Figure 3 is the top level SCALD drawing for BRISC (Appendix E contains the complete set
of SCALD drawings for BRISC). The BRISC CPU contains the ten modules shown in Figure 3.
The coatrol logic is in the CONTROL module and the other nine modules coastitute the data
path. Design of the BRISC data path and control is described in the foilowing sections.

2.2.1. Data Path

Most data flows from left to right in Figure 3, starting with the instruction address being
generated in PCs AND ADDRESS and ending with the result in the RESULT LATCH for sabse-
quent writing back to the REGISTER FILE. The following paragraphs describe each of the
modules in the data path.

3.3.1.1. PCs AND ADDRESS

The top half of the PCs AND ADDRESS drawing in Appendix E contains the program
counters {PCs). BRISC has three PCa: the Next PC (PCN), Current PC (PCC), and Last PC
(PCL). The PCN is incremented at the start of the instruction cycle, used to fetch the next
instruction, snd, except for jumps, becomes the PCC at the end of the instruction cycle. The
PCC holds the value of the program counter for the currently executing instruction and the PCL
holds the 1ast’ value of the PC, useful for interrupts and exceptions.

CYCLE I CYCLE 2: CYCLE 3:
FETCH EXECUTE WRITE
*1 2 3 o4 5 sl
Start Read Read Decode Executios Bufer Write RP
Complete: Complete Complete Result
Start Decode | Read RY
t
PCNe-PCN-+4 Lasch Resuit
TIME -

FIGURE 1. BASIC TIMING CYCLE Tie three cycies of 1a instruction, sad correspondingly the three
stages of the execution pipe, are called Pesch, Eseents, aad Write. At the start of phase 1, the Next
Program Couater (PCN} is gated onto the cache address bus and by the ead of phase 2 the
lastruction has been decoded. la phase 3, the two operaad registers are read from the register
fle and the Arithmede Logic Uait {(ALU) and shifter operations are selected. By the ead of
phase 4, the ALU and shift operstioas are complets. Ia phase §, the result of the data-path
operation is buffered sad the sign optionally extended. Flaally, ia phase 8 the result Is written

back iato the register Lla.

FETCH EXECUTE WRITE
1 2 43 4 [2] L]
START READ R ALY New ALU.OUT= wrrex PRTSULT
(SUB DL7) DE - RESULT
t ?
NPT+ 4 RESULT—ALU.OUT
FETCH EXECUTE WRITE
1 &2 3 &4 S &6
START READ Lo ALUDN— ALU.OUT— BUTYER Ne—RESULT
{ADD LM L oM RISULT
?
PON—PCN+ 4 RESULT—ALU.CUT
FETCH EXECUTE WRITE
1 *2 €3 4 *5 96
START RZAD L SHFT.Ne | SHDFT.OUT— urrm R=RTSULT
’ (L P.QR) rQ P<<q RESULT
H
PON—PON+ ¢ RESULT —SHIT.OUT

FIGURE 2 STANDARD PIPELINE TIMING. Tie folowiag iastraction stream is shawa traveniag the

pipsiize
sSUB DEF

ADD L. MN
L PQR

The 1-axis is time. A vertical llae drawa through the thres timellues would show up to three

simulataneons operations occuriag la the CPU.

RBUS<3). .0

AL, .o
Bt .
e . IMR1C3L..
[~ P
AU
' pAMH
. PP
140 -
L'w AL |- e — e —-~ln/__
b a4 1P
(= ¥] ——W
LITERAL 5P
. o pol—- br DATA oo} e L} ,
o LATCH couUBCaL. . B A~
ADDRESS . .-
CACHE » RESULT
LATCH
N ADOR CRO I _‘
noon i DATA oo P, — g ——
2l
B R Larc a\
2 | L1 is
C SHIFTER
ot
8 pam
')
180
. s1
AOn/DY e 492
e o
REGISTER
FILE e
wn out |- ——— —— e — ~—
G g HIN
ALDR
wECIAL o I]
fous REGISTERS
—
DEFINE _DBAHING : Tt - T T T T
X_FIRST=0 BRISC .
X_STEP=SIZE ‘brisc X
LAST_HODIFIED=Thy Jul 14 23:58:98 1983 TIne: BRISC DATL: 2/10.83
ERGIREERT ™"~ 7T T T T RRGEr .
R Blomsdth/J Deutsch 1 of 1

o T i I s] s il ‘ L= | 3 i I S

Figure 3. BRISC Top Level Dlagram ’

-L-

-8-

The bottom half of the PCs AND ADDRESS drawing shows the memory address generation.
There are two sources for the memory address going to the cache, one is the PCN for instruction
fetches, the other is the ALU for loads and stores. The Cache Address Multiplexor selects the- -
correct address source and sends it to the CACHE modaule.

3.3.1.8. CACHE

A eache has not been designed for BRISC. The ‘cache’ in the drawings is a 258 by 32-bit
memory used oaly to eaable SCALD simulation of the BRISC design. The actual cache would be
on a separate board and would be similar to the cache designed for RISC/E. The RISC/E cache
board contains a cache, Translation Buffer, and Page Usage Bufler.)

RISC/E Cache

The RISC/E cache is a 2-way set associative data and instruction cache with 2043 32-bit
words. The line size may be set by software and is variable from 4 to 32 words. The number of
sets is variable from 64 to 1024. A write-back policy and least recently used (LRU) block replace-
meat algorithm is used.

RISC/E Translation Buffer (TLB)

The purpose of the TLB is to store the most receat virtaal to physical memory address
translations. Accesses o virtual addresses not in the TLB are trapped and translated by
software. The TLB is a 2-way set associative buffer that stores 1024 address translations and

associated memory protection and replacement information.

RISC/E Page Usage Buffer (PUB)

The PUB contains refereace and modification history for each physical page frame. This
information is updated by hardware and used by the page replacement software to identify pages
to be replaced whea more physical page {rames are required.

3.3.1.3. REGISTER FILE

The REGISTER FILE module contains two sets of 128 32-bit registers used for the system
and user register files. Two indepeadent resd requests, or a single write request, may be serviced
in a single clock phase. The dual read is implemented by using two redundant copies of the regis-
ters. Both copies are written simultanecusly, but are read independeatly to retrieve two operands
at 3 time. The register fle memory is implemeated with eight 255x4-bit Fujitsu ECL RAMs.
The RAMs have 2 7 ns access time.

«9-

The REGISTER FILE module supports mapping the 128 registers into the virtual address
space so that executing processes may access any of the 128 registers by referencing the appropri-

ate virtual address.

$.3.1.4. ALU PATH

The ALU PATH module contains 3 high-speed ALU and carry lookahead unit, input multi-
plexors and input/output latches. Each of the two inputs of the ALU can accept data from two
independent sources. The sources may be either of the two source registers specified in the
instruction, immediate data contained in the instruction, the Current PC for relative addressing,
or the result of the previous instruction. ALU PATH output is routed to the RESULT LA TCH
for writing to the REGISTER FILE and also to the Cache Address Multiplexor in PCs AND
ADDRESS to be used as the memory address for branches, loads and stores. All ALU operations

execute in 3 single clock phase.

3.2.1.5. SHIFTER PATH

The SHIFTER PATH module performs 1- to 32.bit left or right shifts with optional sign
extension. Input multiplexors and latches select from the same set of inputs used by the ALU
PATH. The outpaut is latched and routed to the RESULT LATCH for writing to the REGISTER
FILE.

The basic shift part provided in 100K ECL caa only do a logical shift right or a rotate. The
BRISC instruction set also requires arithmetic shifts and left shifts. Arithmetic shifting is pro-
vided by extending the sign bit of the 32-bit operand to an additional 32 bits and making it the
upper 32 bits of the 64-bit input to the shifter. Left shifting is provided by having a path into
the shifter that reverses the input bits and then reverses the result bits on output.

3.3.1.8. SPECIAL REGISTERS

The SPECIAL REGISTERS module contains the Program Status Word (PSW), Current
Window Pointer (CWP), and Saved Window Pointer (SWP). The PSW holds the ALU condition
codes and a byte of CPU status fags. The CWP contains the counters and registers used to point
into the currently active position in the system and user register files. The SWP points to the
last words of the system and aser register files that are in memory and provides detection of regis-
ter window overflow and underfiow for CALL and RETURN.

-10.

3.3.1.7. RESULT LATCH

The RESULT LATCH module is composed of 3 4-way maultiplexer and a 32-bit latch. It
serves to buffer the result of a computation at the ead of each cycle. The four inputs to the
RESULT LATCH are the ALU PATH outpat, the SHIFTER PATH output, one REGISTER
FILE output and the Curreat PC from PC: AND ADDRESS. The outpat is routed to the
REGISTER FILE for register writes and to the resuit bus (RBUS) for register forwarding. Regis-
ter forwarding is required whea an instruction requires the result of its preceding instruction.
Because of the nature of the pipeline, the result will not have been written back to the register
file, s0 it is routed directly to the input mulitiplexors.

3.2.2. Control

RISC processors achieve high performance by optimizing the data path, not by expanding
control. The simple instruction set results in simpler control than is found in conventional proces-
sors. Control consists of pipelined latches driven by control RAMs. The RAMs are used to
decode instructions and control the data path. Control is described in terms of hardware, con-

tents of the contzol RAMs, and the support processor used to program the control RAMs.

2.3.2.1. Control Hardware

The CONTROL module consists of a pipeline of three latches that correspoad to phases 3,
4 and 5 of instruction execution. Instructions are stepped through the pipe and decoded during
phases 3 and 4. Movement of control data through the control pipeline corresponds to the move-
ment of data through the execution pipeline in the data path.

Decoding of instructions is done with RAMSs in the PHASE 8 DECODE RAM and PHASE 4
DECODE RAM modules. Input to the RAMSs consists of the opcode and immediate felds of the
executing instruction, the outputs {rom the RAMSs are the control signais for the data path.

The pipeline is controlled by another set of latches in the PIPELINE CONTROL module.
Inpat to PIPELINE CONTROL consists of the Pipe Control bits geaerated by the PHASE 38
DECODE RAM. These bits coatrol insertion of ope or two extra cycies foe LOAD and STORE

instractions.

3.3.2.2. Control Mlcrocode’

Stone defines microprogramming as ‘the use of storage to implement the control unit.’ ! By
this definition, the conteats of the decode RAMs in CONTROL are the BRISC equivalent of
microcode. BRISC microcode, however, is much simpler than traditional microcode. Tradition-

ally, s variable number of microinstractions are executed per machine instruction. Sequeacing of

<11-

microinstructions is usually controlled by bits in the microinstructions and a microinstruction
counter. BRISC always fetches exactly two microinstructions per RISC instruction, thus BRISC
does not require » microinstruction counter or complex sequencing control. Sequencing of the
microcode is controlled only by the instruction stream; each opcode field is decoded to the 54-bit
microcode word during Phases 3 and 4. Ouly two bits affect timing in any way, they are the Pipe
Control bits described above.

A microcode assembler called DAPL is used to create microcode for BRISC. 14 Only a sub-
set of the full capability of DAPL is required because of the simplicity of the BRISC microcode.
DAPL is used primarily to allow for symbolic names instead of absolute bit patterns in order to
identify the field names and feld contents of the microcode. Symbolic field names and contents
simplify shuffling bits as the microcode is finalized.

The microcode for BRISC has not been completed. Enough microcode has been written to
allow simulation of the BRISC arithmetic instructions. A listing of the microcode as DAPL input
is included in Appendix F.

2.2.2.3. Support Processor

The support processor initializes contents of the control RAMs. The support processor may
aiso be used to debug the BRISC hardware. Serial inputs and outputs of the edge-triggered shift
registers used as latches in BRISC may be tied together to allow scan-in scan-out of processor
state by the support processor. Some of the flow-through latches currently used by BRISC may
be converted to edge-triggered shift register latches to provide more of the processor state to the
support processor. Additional hardware may be added to allow single stepping the BRISC CPU
with the support processor.

The interface to the support processor has not been designed, nor has a support processot
been selected. It is eavisioned that the interface to the support processor will have minimal
impact oo the BRISC desiga, and that any commercially available micro or minicomputer may be
used for the support processor.

3. Performance Analysis

BRISC performance is estimated in terms of benchmark performance, and is compared to

the same benchmarks run on other high performance computers.

12~

3.1. BRISC Performancs

BRISC performance is determined by the speed of the CPU, memory, and Input/Output
(1/O) subsystems - and also by the degree of overlap of each. Degradation of performance by the
1/O subsystem is assumed to be minimal for the beachmarks used, and is not considered. The
benchmarks do not include system overhead because task time is measured instead of elapsed

time; therefore, system overhead is not considered.

As a resuit of ignoring 1/O and system overhead, only CPU and memory subsystem speed is
used to determine BRISC performance. CPU speed is first considered to determine the CPU cycle
time; then this time is degraded by the memory subsystem overhead to calculate an estimate of
BRISC performance.

BRISC performance calculatioa can only be an approximation because of the number of
variables that affect performance. As 3 result, three BRISC performance figures are calculated
using three sets of assumptions for the performance variables. The three performance figures pro-
vide a simple sensitivity analysis of the assumptions made, and are identifled as BRISC A, BRISC
B and BRISC C. BRISC A is a fictitious best case fgure, unattainable but a reasonable upper
bound on performance. BRISC B is middle of the road figure, with conservative estimates used
to calculate a plausible estimate of BRISC performance. BRISC C uses worst case figures to give

a lower bound oa performance.

3.1.1. CPU Speed

CPU speed is determined by the basic cycle time of the CPU and the namber of cycles per
instruction. These numbers are presented, and suggestions made for possibly improving the
BRISC CPU speed.

3.1.1.1. CPU Cycle Time
The SCALD system timing verifier was used to determine the BRISC CPU cycle time. The

SCALD timing verifier uses worst case minimum and maximum delay times through all parts of
the design to find timing errors. Outpat of the timing verifier may be used to calculate worst case
logic delays. The timing verifier identified the register fle read as the worst case path through
the CPU. The register file is in the critical path because of the time required to do the register
address calcnlation and the time required to read the register dle RAM (7 ns access time). The
minimum time for a register file read including address calculation aad RAM access time s 18.5
as. Assaming equal length phases, the BRISC minimum cycle time is therefore 37 ns.

A 37 na ¢ycle time assumes worst case logic delays, but no wire delays. Wire delays account
for aboat half the cycle time of maay high performance CPUs, so the 37 ns cycle time for BRISC

13-

peeds to be corrected for wire delays. The SCALD system does not include a physical design sys-

tem, so accurate values for the wire delays in BRISC are not available.

SCALD does provide a means to input an estimate of wire delay. Wire delay input is
specified 2s 3 minimum and maximum delay to be used on all wires. The minimum and max-
imum numbers are used to find worst case delays as determined by worst case wire delays and
worst case logic delays. Figure 4 shows the aflect of different values of worst case wire delays on

the BRISC cycle time 23 reported by the SCALD timing verifier.

] 1 | 1 | |]]]]
° 02 04 08 0B 1.0 1.2 1.4 1.8 1.8 20

MAXINUM WIRE DELAY (ns)

Figure 4. BRISC CPU Cycle Time

—

The BRISC CPU has been designed to 8t on a single board to keep wire lengths short and
to avoid the delay penalty of connectors to other boards. It is assumed that chips will be located
on the CPU board such that wire delay is minimized through the worst case path. For example,
the register file address generation logic will be located in a small area to minimize worst case
wire delays.

A best case wire delay of 0.0 as is used for BRISC A, a median wire delay of 0.5-1.0 ns is
used for BRISC B, and a worst case wire delay of 0.5-2.0 ns is used for BRISC C. The resuiting
CPU cycle times are 37 ns for BRISC A, 46 as for BRISC B, and 63 ns for BRISC C. A median
wire delay of 0.5-1.0 ns is considered reasonable becanse most of the parts in the critical path can
be kept together. Adjaceat ICs have s 0.5 ns delay between them, so most wires in the critical

e14-

path should be close to 3 0.5 ns delay. A few wires may be longer than 2.0 ns, but the average in
the worst case path is estimated to be 1.0 ns.

3.1.1.8. CPU Cycles Per Instruction

As stated in Section 3.1, BRISC completes an instruction every cycle except for the LOAD
and STORE instructions that sdd an extra oae or two cycles. RISC I requires one extra eycle fot
LOAD and STORE, and this extra cycle was considered in the original RISC I beachmarks. These
benchmarks will be used to calculate BRISC performance, 50 the affect of a single extra cycle for
loads and stores will be included. RISC I did not require a third cycle for unaligned loads and
stores as required by BRISC. The benchmarks considered, however, only use 32-bit data, so ail
loads and stores in the beachmarks require only two cycles, and the third cycle may be safely
ignored.

The affect of unaligned loads and stores oa programs other than the benchmarks should be
minimal. Loads and stores can be conservatively estimated to occur in 20% of RISC I instruc-
tions. Evea if half of the loads and stores are unaligned, the total affect on BRISC performance is
an 8% degradation in throughpat. This performance degradation may be avoided by using only
32-bit data.

3.1.1.3. Design Changes

An advantage of using SCALD for designing a computer is that experiments may be tried
with slightly differeat architectures to nd the overall impact on performance and cost of alterna-
tive architectares. An architectural festure is justified oaly if the benefits of the feature cutweigh
the cost. For example, if a feature adds 3 ns per phase (6 ns per cycle) to the critical path
becaase of a single logic delay and a wire delay, thea that feature increases the 47 ns cycle time
of BRISC B by 13%. The featare is therefore ot worthwhile unless it makes up for the 13%
decrease in CPU cycle time.

Even if a feature does not add gate delays to the critical path, if additional chips are
required, the room required by the additional chips may add wire delays to the eritical path, and
the additional chips sdd to the total cost. Performance and cost impact is much more severe if
an additional board is required.

A few architectural experiments have been run om the BRISC design. The ALU PATH,
SHIFTER PATH, and CONTROL modules were redesigned several times to decrease parts count
and increase speed. This section describes some further experiments that should be rua to fnd
the cost of specific architectaral {eatures. The ;huges are groaped under design deletions, design

enhancemesnts, and other changes.

S YOIRIPUN

-15-

Design Deletions

SEPARATE SYSTEM AND USER REGISTER FILES: The RISC 1 architecture does not
include separate system and user register files. The separate files were added by RISC/E because
the single 128-word register file required by the RISC I architecture occupied only half of the
256-word RAM. The unused half of the RAM was allocated to a second register file. Separate
system and user register files do ot directly aflect BRISC CPU performance, but they do add
complexity and parts to the BRISC CPU design and as s result may impact overall CPU perfor-
mance. Complexity is added because ten registers of each register file are devoted to the global
registers, which are shared by all tegister windows. In order to avoid addressing the giobal regis-
ters in the register file RAMs, additional RAMSs are used (the ADDSUB module) to increment the
Current Window Pointer (CWP). If the system registers were deleted, the global registers could
be moved to the unused half of the register file RAM, counters could be used instead of the
latches currently used in the CWP, and ADDSUB deleted. The system CWP and SWP could
also be deleted, for a total chip savings of over 9 chips. CPU performance may be improved
because of the smaller number of parts, but system performance may be degraded because of
slower switching between system and user modes (but only if system mode required a separate

stack from user mode).

REGISTER FILE: Since the register file is in the critical path, an interesting experiment
would be to delete the register file entirely and replace it with a single set of registers as used in
conventional architectures. Then register address calculation woald be greatly simplified because
the CWP would no longer be required and the register address determined only by the register
pumber bits in the instruction. Deleting the register file would save at least two gate delays and
amociated wire delays for a total savings of at least 5 ns per phase (10 ns per cycle). A savings of
10 ns translates to a 21% performance increase for BRISC B. More than 30 chips would also be
deleted from the design. The resulting CPU woald be significantly faster and smaller, but calls,
returns, and accesses to local variables would take many more instructions than required by the
RISC I instruction set with the register file. More analysis needs to be performed to find the true
cost of the register file.

REVERSE SUBTRACT: The REVERSE SUBTRACT imstruction allows the two source
operands of an instruction to be subtracted in the reverse order from the SUBTRACT instruction
and is of questionable utility. REVERSE SUBTRACT has not been deleted because it does not seem

to have any impact on the BRISC CPU performance or cost.

16 -

Design Addltions

MULTIPLY: As will be shown in the benchmark section, BRISC performs well on beach-
marks with multiplies, even without a MUL TIPLY instruction. But BRISC could be made even fas-" *
ter if MULTIPLY could be added with little impact to the rest of the CPU. This could be accom-
plished by adding a single chip maultiplier in parallel with the ALU. Carrently available single
chip multipliers are significantly slower thaa the BRISC CPU cycle time, but are getting laster.
As faster multipliers become svailable, 3 multiplier will be a useful addition to the BRISC CPU.

FLOATING POINT: BRISC is not well suited for problems with heavy floating point
emphasis because of the lack of foating point hardware in the BRISC CPU. Floating point per-
formance of BRISC could be enhanced by adding hardware to do the time consuming tasks of
floating point operations. This is in keeping with the RISC philosophy of adding hardware only
for time consuming tasks. A possible addition for foating point is the multiplier mentioned in the
previous paragraph. Another addition would be a leading seroes counter to be used with the
shifter for mormalization. Ideally, changes for foating point should not complicate control,
instead they should only enhance the data path for floating point operations. More research is
required to identify the best way to add floating point to s RISC processor.

Redesign

MULTIPLEXORS VS. OPEN-EMITTER BUSSES: BRISC uses two methods for selecting
one of several sources into an input. One is s multiplexor on the input; the other is an CR-gate
for each of the sources with outputs tied together on an open-emitter bus. Examples of muaiti-
plexor input can be found in the ALU PATH and SHIFTER PATH inputs. An example of aa
open-emitter bus is the resalt bus (RBUS) which is driven by the Last PC, Current PC and the
RESULT LATCH. Open-emitter busses have less logic delay, but caa have longer wire delays
because of the length of the busses and transmission line effects along the busses. Open-emitter
busses should only be used i the sources are close together, or if there are too many destinations
to add multiplexors on every input. More analysis may show that BRISC shouid use a different

mix of multiplexors and open-emitter busses to increase performance or decrease cost.

SHARED MULTIPLEXORS: Bussing msy 3slso be improved by combining multiplexors.
For example, analysis may show that the SPECIAL REGISTER input multiplexor may be com-
bined with the ALU PATH input muitiplexor for a savings of six parts. Sharing maltiplexors
may bave an adverse affect on CPU performaance because of longer wires caused by the sharing of
» single maltiplexor between two logical portions of the CPU.

REGISTER ADDRESS CALCULATION: As stated previously, register address calculation
is a major contribater to the critical path of the BRISC CPU. Register address calculation should
be redesigned to save gate and wire delays in the critical path. Ogpe or two gate delays may be

«17 -

saved by reallocating some of the random logic used for register address calculation. The
expected performance increase is between 2 and 5 ns per phase (4 to 10 ns per cycle), for a perfor-
mance gain of between 9 and 21% for BRISC B.

3.1.3. Memory Speed

Section 3.1.1 derived the CPU cycle time for BRISC and suggested methods of improving
the cycle time. CPU cycle time was derived for BRISCs A, B, and C by using three sets of
assumptions for wire delay. The purpose of this section is to derive numbers for the cycle times
of BRISCs A, B, and C weighted by the delays caused by the memory subsystem. These numbers
are used to calculate the speed of BRISCs A, B, and C relative to a 400 ns RISC II processor.
Petformance of a 400 ns RISC II processor is not degraded by the memory subsystem because
sddress translation apd main memory access occur within a single 400 ns cycle, so no cache or
TLB is required.

Memory subsystem performaace is determined by many factors including cache perfor-
mance, virtual memory petrformance, and access time of main memory. These factors interact

with each other and with the CPU performance.

This section assumes that the overhead incurred by the virtual memory for BRISC is
minimal. Virtual memory overhead includes virtual address translation time and page fault time.
Virtual address translation time can be kept low with the use of a Traaslation Baffer (TLB). For
exa.mble, the observed hit ratio for the Amdahl 470V/6 TLB is about 90.6 to 90.7%. 2! The
penalty incurred by page faults can be kept low by using a large physical memory to keep the
page fault rate low, and by switching processes during disk accesses caused by page faults to

minimize their affect.

If virtaal memory overhead is assumed to be low, then memory subsystem performance is
determined by the cache performance and main memory access time. Factors afecting cache per-
formance include cache size, line size, set size, cache bandwidth, main memory bandwidth, cache
fetch algorithm, placement algorithm, replacement algorithm, write-through vs. write-back, cache
priorities, and prefetch. Smith provides an excellent discussion of these factors. 2! Appendix B
shows the variability of these factors for some typical g:ommercial computers as presented by
Smith 2! , Pier 18 and Clark. 3

For purposes of determining the memory subsystem performance, the cache performance
factors mentioned in the previous paragraph may be summarized by three performance numbers:
the sccess time of the cache, the cache hit ratio, and the memory waiting time due to cache
misses. Access time of the cache is the time measured from the start of 3 memory request by the
CPU to the time the request is fulfilled by the cache when there is a cache hit. Cache hit ratio is

the percentage of CPU memory references that are found in the cache. Memory waiting time is

-18-

the average time that the CPU must wait for a cache miss. s

The access time of the cache should be designed to be at least as fast as the cycle time of
the CPU, otherwise the CPU will pever run at full speed. The 10K ECL RISC/E cache is the” -~
same speed as the 10K ECL RISC/E CPU; therefore, it is assumed that a 100K ECL cache may
be bailt for BRISC with the same cycle time as the 100K BRISC CPU.

Best case performance for the memory sabeystem is a hit rate of 100% so that the CPU
always runs at full speed; BRISC A assumes a 100% hit rate as the upper bound on performance.

Figure 5 plots the affect of cache hit ratio and memory waiting time on BRISC B and
BRISC C performance (Appendix C includes the data used to generate Figure 5). Three curves
are shown for each processor, one esch for 400, 800, and 1200 ns memory wait times. BRISC A

with no memory wait time is also included for reference.

Smith 2! presents analytic results of cache hit ratios of over 99% for typical caches. He also
preseats empirical results of cache hit ratics of over 98% for user state programs on the Amdahl
470 with s 16K cache. Simulations performed by DEC for the PDP-11/70 cache showed a hit
ratio of over 98% for a 2K cache with a line size of four words. 2 Based on these results BRISC B

will assume 3 cache hit ratio of $8% 3s a reasonable estimate of cache performance.

Both the analytic and empirical curves preseated by Smith seldom show less than 3 95% hit
ratio. DEC's simalations also show better than a 95% hit ratio for a 2K cache with a line size of
ome. As 3 worst case estimate, BRISC C will use 2 95% hit ratio.

Memory waiting time may be approximated by the cycle time of main memory, as long as
the line size equals the size of the path to main memory. Memory waiting time may be made less
than the cycle time of main memory by using write buffers, but some of this gain may be lost
because of interfereace from pre-fetches. Smith reports typical main memory access times of 300
to 600 ns for the Amdabl 470V/7 and [BM 3033. These numbers are similar to the main memory
sccess times of smaller computers sach as the Sun Workstation$, which has a main memory access
time of 400 ns including virtnal address translation time. 2 Clark reports 3 main memory access
time of 1200 to 1400 ns for the VAX-11/780. 3 BRISC A is aot aflected by main memory access
time since it has 3 100% hit ratio; BRISC B assumes 2 400 ns main memory access time and

BRISC C assumes a 1200 ns main memory access time.

t Sem Wertstation is 3 registersd trademark of Sua Microsystems, Iac.

Effective
Cycle
Time

(ns)

180 —
. 1200 ns memory wait time
180 800 ns memory wait time
400 ns fnemory wait time
140
120
100
80
80
40 e O e memory wall UM
20 —
. N N (N RN IS NN N NN B
20 91 92 93 94 95 96 97 28 99 100
Cache Hit Ratio (%)
Figure 5. BRISC Effective Cycle Time

BRISC C (83ns)

BRISC B (46ns)

........................... BRISC A (3Tns)

-6'[-

ran

3.3. Benchmark Comparisons

Table 1 summarizes the performance of BRISCs A, B, and C based on the resuits of Section
3.1. The cycle times of 37, 53 and 120 ns were divided into the 400 ns cycle time of RISC II to
determine the ratio of BRISC cycle time to RISC 11 cycle time, which is shown in the bottom line
of Table 1. This ratio is used to calculate BRISC performance in the following benchmarks.

Table 1. BRISC A, B and C Performance Summary

FACTOR BRISC A | BRISCB | BRISCC
Logic Cycle Time (ns) 37 37 L
Clock Skew (= ns) 0.0 0.1 0.1
Minimam Wire Delay (ns) 0.0 0.5 0.5
Maximum Wire Delay (ns) 0.0 1.0 2.0
TOTAL CPU CYCLE TIME (ns} 37 46 63
hche Hit Ratio 100% 8% 95%
Miss Penalty (ns) 0 400 1200
‘ EFFECTIVE CPU CYCLE TIME (n3) 37 53 120
BRISC/RISC I Cycle Time Ratio .09 .13 .30

The original RISC I beachmarks were run with & RISC simulator. The RISC simulator
takes into account the extra cycle required for loads aad stores, and also takes into account the
affect of register window spills into main memory. Three beachmarks are presented, the Puzzle
program, TAK LISP benchmark, and UNIX Portable C Compiler. Three beachmarks are used to
measare BRISC performance for different applications. Each beachmark presents the time in
seconds to execute the benchmark. Benchmark performance is also preseated as a3 maltiple of
VAX-11/780 performance, shown as the ratio of the number of seconds required by the VAX
divided by the number of seconds required by the computer being measared. VAX performance is
used because the YAX has become 3 peeado-standard for comparisou, and because 3 BRISC com-
puter could be built for aboat the cost of a VAL

Pusszie Program

The Puzzle program is a recursive puzzle solving program originated by Forest Baskett that
has been used to benchmark many mainframe and minicomputers. Selinger 19 presents listings of
the Puzsle program and sources of Puzzle benchmark data for many computers. Patterson and
Séquin!t identify beachmark resalts for a 400 ns RISC L Table 2 lista the results of Puzzie
benchmarks for BRISCs A, B and C relative to the Selinger and Patterson numbers. Table 2 only
lists the better numbers where conflicting data is available for the same machine. BRISCs A and
B outperform all available Puzzle times; even the worst case BRISC C outperformed all beach-
marks except for the best time reported for the Amdahl 470V/8.

«2]-

Table 2. Puzzle Benchmark Results
TIME CPU

MACHINE vec | VAX sec/oec LANGUAGE COMMENTS COST
BRISC A (37 ns) 0.3 11.8 o] pointers $132K
BRISCB (530s) | 0.4 8.3 c pointers $132K
Amdahl 470V/8 0.7 5.0 C pointers, reg vars $1100K
BRISCC (120 ns) | 1.0 36 o] pointers $132K
Amdahl 470V/8 1.1 3.2 C pointers $1100K
Amdahl 470V/8 1.1 3.2 Pascal no range checking $1100K
Amdahl 470V/8 1.2 29 C reg vars $1100K
IBM 3081 1.4 2.5 Pascal $3260K
Amdahl 470V/8 16 2.2 Cc subscripts $1100K
S-1Mark 1 20 18 Pascal subscripts $2000K
Dorado 20 18 Mesa pointers $118K
Amdahi 470V/8 2.3 1.5 Pascal $1100K
Dorado 3.0 1.2 Mesa subscripts $118K
RISC 1I (400 as) 3.2 1.1 Cc pointers $10K
VAX 11/780 35 1.0 c pointers $132K
DEC 2060 4.4 0.8 Pascal pointers $502K
DEC 2060 46 0.8 C pointers, hand opt $502K
VAX 11/780 46 03 c subscripts $132K
RISC 11 (400 ns) 4.7 0.7 Cc subscripts $10K
DEC 2060 4.7 0.7 C subscripts, hand opt | $502K
DEC 2060 53 0.7 C pointers $502K
DEC 2060 5.4 0.6 Pascal subscripts $502K
DEC KL 10 6.0 0.8 C pointers $540K
VAX 11/780 6.1 0.6 Pascal subscripts $132K
PDP 11/70 6.4 0.5 c pointers $70K
DEC 2060 73 0.5 C sabscripts $502K
IBM 158 7.5 0.5 Pascal subscripts $1550K
68000 (8 MHz) 17.0 0.2 C pointers, nunix $10K

TAK Benchmark
The TAK benchmark is a heavily recursive function used to measure the efficiency of LISP

procedure calls as well as the efficiency of LISP fxnum and bignum arithmetic. 17 Fixnum arith-
metic refers to integers of bounded length, whereas bignum arithmetic refers to integers of
unbounded length. Figure 8 is a listing of the TAK benchmark. Table 3 presents the results
reported by Ponder compared to the times calculated for BRISC. BRISCs A and B again outper-
form all available beachmarks; BRISC C is ouly beat by the Dorado.

Ponder estimated RISC I performance for LISP by compiling the LISP code oa 3 VAX and
hand transiating the output to RISC I assembly code. Ponder states that a LISP compiler optim-
ized for RISC could be built with better performance than is shown in Table 3. Recent studies
by Ponder show that with minor enhmcementu' a 400 ns RISC processor could be built that exe-
cuted the TAK benchmark in under 0.68 seconds. This transiates to times of 0.06, 0.09 and 0.20
seconds for BRISCs A, B, and C (5.6 to 18.0 times faster than 2 VAX).

(tak 18 12 6)

(defun tak{x y 1) -
. (cond ((not (lessp ¥y x}) 2)

(¢ (tak (tak(sabl x} ¥ 3)
(tak (sably) 3 x)
(tak (subl 3) x ¥)))))

Figure 8. TAK Benchmark

‘ Table 3. TAK Benchmark Results

y TIME CPU

MA sec | VAX sec/sec LANGUAGE COST
BRISC A (37 as) | 0.2 5.9 PSL/Franz LISP | $132K
BRISCB (53 as) | 03 4.2 PSL/Frans LISP | $132K
Dorado 0.5 2.2 InterLISP $118K
BRISC C (120 ns) | 0.6 1.8 PSL/Fraaz LISP | $132K
DEC KL10 0.8 1.4 MacLISP $540K
VAX 11/780 1.1 1.0 Franz LISP $132K
RISC 1II (400 ns) 2.0 0.6 PSL/Frans LISP | $10K
68000 (8 MHz) 2.9 0.9 PSL SYSLISP $10K
Dolphin 5.7 0.2 IntesLISP $40K

C Compller

Miros ported the Portable C Compiler by Steve Jobnson % tp RISC L 12 After porting the
compiler, Miros compared the performance of the VAX Portable C Compiler running on 3 VAX to
the VAX Portable C Compiler running on 3 400 ns RISC L His results are presented in Table 4.
BRISCs A, B, and C are all significantly faster than 3 VAL

Table 4. VAX Portable C Compller Benchmark Results

LD.C SORT.C PUZZLE.C CPU
MACHINE COMPLLE TIME COMPILE TIME COMPILE TIME COST
sce | VAX sec/sec | sec | VAX sec/sec | sec | VAX sec/sec

BRISC A (37 as) | 16 17.8 10 177 0.3 194 $132K
BRISC B (53 ns) 2.2 125 14 12.4 0.4 13.5 $132K
BRISC C (120 ns) | 5.1 5.5 3.2 5.5 0.9 6.0 $132K
RISC I (400 ns) 18.9 1.7 10.6 1.8 29 1.8 $10K
VAX 11/780 27.9 1.0 17.4 1.0 5.2 1.0 $132K

Benchmark Summary

Figure 7 is a summary of some of the results from the above benchmarks. The best times
are shown for four main{rames, two minicomputers, and two microcomputers. Performance is
shown 3s a muitiple of VAX performance. BRISCs A and B outperform all the listed computers,
and BRISC C is competitive. Using BRISC B as the best estimate of BRISC performance, BRISC
is 8 to 13 times faster than a VAX for C programs, and 4 times faster than 3 VAX for LISP pro-

grams.

4. Cost

Much as performance is determined by the combination of many factors, so is cost deter-
mined by many factors. Selinger defines computer workstation cost as the sum of the manufac-
turing and labor costs of parts, boards, cables, logic cages, backplanes, cabinets, power distribu-
tion back panel, front panel, assembly, and test. 19 He thep defines price as the sum of manufac-
turing cost, development cost, sales cost, service cost, and profit or loss. It is beyond the scope of
this paper to estimate the values of all these items to calculate the price of a computer built
around the BRISC CPU. Instead, the cost of a BRISC computer will be estimated by comparing
BRISC to an existing computer to calculate the relative price of BRISC. The Dorado ? computer
by Xerox was selected as the existing computer for comparison because it is also an ECL com-

puter, aad is about the same size as a system built around BRISC.

The Dorado is a high-performance personal computer copsisting of 3200 medium scale
integrated components (not including memory), most of which are ECL 10K. 18 The Dorado con-
tains everything a BRISC computer would need including up to 8 Megabytes of main memory, 3
high-performance cache with a 30 ns cycle time, peripheral interfaces, and a large 2050 watt
power supply producing sufficient power and ECL voltages (-5V at 250A and -2V at 75A).

The cost for 3 BRISC computer is calculated by comparing the cost of the BRISC CPU to
the Dorado CPU and keeping all other coets the same. The difference in cost of the two CPUs is
found by first determining the difference in the number of chips. To compare the number of chips
in the Dorado with the number of chips in BRISC, a lower bound is determined for the number of
chips in the Dorado that would be replaced by the BRISC CPU.

The Dorado consists of up to 24 boards with up to 288 chips per board. Five of the 24
boards constitute the Dorado CPU and are listed in Table 5. Table 5 also lists a lower bound for
the number of chips on each of the Bve boards in the CPU. 17

About half of the Instraction Fetch Unit (IFU) is used to control the memory, the other half
is devoted to the CPU; the IFU will not be considered as part of the CPU to obtain a conserva-

tive estimate.

VAXs

16

14

12

10

| - l VAX Portable C Compiler (ld.c)

1, Puze
- 7 Ak
L.d
—
| BRISC A Puzzle Performancs
b
t
|
: |
— '
i
y |
| ' BRISC B Puzzle Parformance
--L 'rfi--Fr-—-"""""""""""""=""""°"“~"~"¥;"/"/;"-;/"/o/--o------
R I PR,
S I PR
| : | :
p=— ‘ - — '
| |
) |
| :) : - -
IRH R
| : | : . : BRISC C Puzzle Performance
T h] L t-r----"--"-"-~"~-""-""=""""""-""""==""-“"="~=~"-~"=~""~-=""~-=""=-"”77
TR R O
I) i | — =
| i | | I —-
- | | | | | :
! i ! — ! T T
I 0 | 1 i i i —
| Pl | R ' | [T [P i
I.I|I|Iilllil|||l_l.||_i_! i
v | I b I I | 1 i (NI R
NI NI 1 ! N i ! A | i ! N l‘ J' ! Ll i! J!"I_‘
BRISC BRISC Amdehl BRISC IOM S-1 Xerox RISC VAX- DEC 68000
A 1] 470V/8 C 3081 Mark 1 Dorado I 11/780 KL10 (8 MHz)

MACHINE

IFigure 7. Performance Summary

-v Zu

429

Table 5. Dorado CPU Boards]
BOARD %, POPULATED | # CHIPS (288 Max
Instruction fetch unmit 80% 230
Processor high byte 90-05% 260-275
Processor low byte 90-95% 260-275
Control section 90-95% 260-275
Microinstruction memory 90-95% 260-275

The Dorado CPU performs task switching at the microcode level. Microcode tasks are
called microtasks. Some microtasks are used as device controllers - a DMA controller would
therefore be required if the Dorado CPU was removed. A DMA controller would be no more com-
plex than the Control Section of the Dorado, so the Control Sectioa will not be counted as part of
the Dorado CPU.

Ignoring the IFU and Coatrol Section leaves three boards in the Dorado CPU: the Processor
High Byte, Processor Low Byte, and the Microinstruction Memory. These three boards contain
about 780 chips. The 332 100K chips of the BRISC CPU would occupy the same board space
required by about 664 10K chips because of the 24-pin packages used by the 100K parts versus
the 16-pin packages used by the 10K parts. The BRISC CPU therefore tequires 15% less board
area than the Dorado CPU. Insertion coet is also 15% less for BRISC; 24-pin packages cost twice
as much to insert as 16-pin packages, 1% but BRISC has 43% the namber of chips of the Dorado
CPU.

In order to calculate 3 conservative estimate for the cost of a BRISC CPU, the Dorado and
BRISC CPUs are assumed to have the same PC board and IC insertion costs. PC board and
insertion costs being equal, the difference in cost of the two CPUs will therefore be largely deter-
mined by the difference in parts cost. Parts cost of the Dorado CPU is not known {except by
Xerax). The least expensive 10K part sells for 61 cents in quantities of 100 to 1000, so a lower
bound on parts cost for the Dorado CPU is $475.80. The BRISC parts list (Appendix D) shows
the parts cost of BRISC is $3330.32 in parts quantities of 100 to 1000. The resulting parts cost
difference between the BRISC CPU and the Dorado CPU is at most $2854.52. Selinger calculated
the markup for the VAX-11/780 to be 5.2 times, which he showed to be cosistent with the mark-
lin used by other manufacturers. Using » 5.2 times markup for the parts differential between
BRISC and Dorado gives a selling price difference of $14,843.50. Dorados sell for $129,500 with 2
Megabytes (MB) of main memory and an 80 MB disk. Discounting for the cost of an 80 MB disk
($11,900) 23 gives a seiling price of $117,600 for the Dorado without peripherals. A BRISC com-
puter could therefore be sold for less than $14,843.50 over the $117,600 seiling price of 3 Dorado,
or about $132,444. This is nearly identical to the price of a VAX-11/780 without peripherals,
which Selinger caleulates to be $132,400 with 1 MB of main memory (the Dorado comes with 2

MB).

§. Closing Remarks

This section presents retrospectives by the BRISC designers on the BRISC project.

$.1. Comments on SCALD

The BRISC project would not be at the point it is today without the SCALD system.
SCALD has proven to be an invaluable tool for computer design. Traditionally, computer design
bas been 3 rigid process because of the difficaity of making changes to hardware once it is built.
SCALD provides 3 vehicle to do esploratory Aardware design, much as 3 good programming
environment allows czploratory programming. Beaa Sheil defines exploratory programming as an
approach to programming combining system design with implementation. % In an exploratory
programming eavironment, the programmer experiments with changes to the design and immedi-
ately sees their eflect on the operation of the system. Exploratory hardware design combines
design and implementation in the sense that the hardware designer can make changes to the
hardware design and immediately see the effect on the operation of the hardware system. Efects
are seen by using timing verification, simulation and post processing rather than by bailding and
testing physical hardware. [n this way many poesible solutions to the same problem may be tried
and evaluated, and the best solution selected. The best solution is picked on the basis of logicsl
correctness, speed and parts cost.

SCALD provides the equivalent of what Sheil calls programming power tools in the form of
five application programs: a graphics editor, compiler, timing verifier, simulator, and poset proces-
sor. These tools amplify the power of the hardware designer so that he can produce a better
design in less time.

As with most software tools, the tools provided by the Valid SCALD system have several
deficiencies that detract from the usefulness of the system, the most noteable being the speed of
the system. This section describes the speed of the Valid SCALD system and comments on each
of the Valid SCALD tools from the point of view of the BRISC designers.

§.1.1. SCALD Speed

While SCALD comes a long way in making exploratory hardware design 3a simpie 28
exploratory programming, the single biggest detractor is the speed of the SCALD system.
Exploratory hardware design implies interactive use of the SCALD system, which means that fast
response is required for most commands (i.e. less thaa one second), snd response time may occa-
sionally go up to 30 seconds. Studies have shown that user productivity goes down whea response

times go over three seconds, probably becaase of the disruption of user thought processes. 24

-.27.

Table 6 lists a few of the response times encountered during the BRISC design. While Valid has
significantly improved the speed of the post processor - it once took over six hours for BRISC
with 606 parts, and now only takes 12 minates with 332 parts - the response times need to be

much better to allow true interactive design.

able 6. Valld SCALD Speed

r T
FUNCTION APPLICATION

ELAPSED TIME | CPU TIME
PROGRAM MODULE (min:sec) (min:sec
Compiler PCs & Address 3:58 3:23
Timing BRISC 23:19 22:21
Verification Timing PCs & Address 2:31 2:30
Verifler BRISC#¢ 13:32 12:19
Compiler PCs & Address 4:13 3:37
BRISC 32:26 26:56
Simulation Simulator PCs & Address 7:10
(start-up) BRISC 17:59
Simulator PCs & Address 04
(per cycle) BRISC :36
Compiler PCs & Address 1:59 1:28
Post BRISC 10:19 9:34
Processing Post Processor PCs & Address 1:40 1:38
| BRISC 12:23 12:19

t{Does not inciude PCs & Address, Cache, Special Registers, or Result Latch.

In fairness to Valid it should be mentioned that the Valid SCALD system used for BRISC
runs on & 88000. Valid also sells SCALD systems for VAXs (with the VMS operating system) acd
IBM 370s. Table 2 may be used to compare the performance and cost of the 88000, VAX and
IBM 370 (Models 158 and 3081).

8.1.3. Graphles Editor

The graphics editor proved to be 3 useful tool for entering drawings and changing drawings
after they were entered. The graphics editor is very fast for most drawings and encourages
interactive design. The graphics editor’s interactive nature made it much more useful than other

drawing tools previously available at Berkeley.

§.1.3. Compller

The compiler converts drawings from the format created by the graphics editor to a format
usable by the timing verifier, simulator and post processor. As such, the compiler is nothing more
than an intermediary between the graphics editor and the other applications as opposed to a
design tool.

-

L e e dma e e - e e e v e e e PR

-28-

The compiler has provea useful for nding assertion violations. Assertion violations are sig-

pals that are asserted high which are inadverteatly tied to signals that are asserted low. While

only a few such errors have been found by the compiler in BRISC, the errors were detected faster

and corrected sooner than if they had been found with the simulator {see Table 6).

The compiler is not designed for interactive use. A command file must be edited every time
a different type of outpat is required (i.e. for the timing verifier, simulator or post processor), and
every time a different drawing is compiled. The command file supports batch versions of SCALD,
and is not appropriate for an interactive environment.

8.1.4. Timing Verifier

The timing verifier uses minimum and maximum timing parameters for all parts in a circuit
to calculate a value history of all signals during a single clock cycle. The timing verifier has two
uses, one is to ind timing violations such as changing signals violating set-up times, the other is

to calculate the cycle time of a circuit.

Timing Vicolations

The timing verifier is useful when it Snds valid timing violations, but is sometimes difficalt
to use and is too conservative. To get realistic outputs, timing behavior of undrivea inpats to a
circnit must sometimes be specified, otherwise all signals may stay stable aand no verification will
occur. Sometimes, the timing verifier is so conservative that it Ands errors that could never occur
in a real circuit. For example, the timing verifier once identified the input to 2 Jip-dop to be
changing before the clock, even though the inpat was driven by the negative output of the flip-
flop (that cannot possibly change before the clock).

Some timing violations cause the timing verifier to go into an endless loop, making them
exceedingly difficult to find. A few timing violations have been detected in BRISC by the timing

verifier; mostly with the endless loop method.

Cycle Time Calculation

The timing verifier does not aatomatically identily the worst case path through a circuit, as
is done by Crystal. 12 Instead, the designer must examine the value history of all signals in a cir-
cuit and find the signal that is stable last. The worst case path is important for two reasons.
First, the delay through the worst case path must be knowa to find the minimum cycle time of a
circuit. Second, the designer should concentrate on optimizing the worst case path to speed up
the circuit, but he needs to know the worst case path before he can fix it. The minimum cycle
time may also be found by running the timing verifier wi-th successively shorter and shorter clock

cycles until timing errors are found; that still does not identify the worst case 'path and is time

consuming.

Since large CPUs tend to spend about half of their cycle times in wire delays, it is essential
that wire delays be included in timing verifier calculations. Wire delays for ECL shocld include
both delays due to the length of the wires, and delays induced by loads along the wires. Because
of the speed of ECL, most wires act like transmission lines, and the wire delay calculator should
treat them as such. As was mentioned in Section 3.1.1.1, a single pair of minimum and maximum
wire delays may be specified to the verifier, but that is too crude an approximation. Alterna-
tively, the timing verifier does have the capability to accept calculated wire delays from a physi-
cal design system, but the Valid SCALD system does not include a physical design system. Evea
though a SCALD design may be transformed into the input format of another vendor’s design
system, this preciudes exploratory hardware design because it is no longer interactive; the design

cycle is measured in days instead of minutes when two design systems are used.

5.1.5. Simulator

The simulator does logic simulation of a circuit to verify logical correctness of a design.
The simulator is potentially the most useful of the SCALD tools, but it also takes the longest to
get any results and to correct errors that are found. The simulator has been used to simulate the
operation of the PCs AND ADDRESS, the ALU PATH, a.ngi the SHIFTER PATH. These
modules were picked for simulation because they each do a well defined logical function. The
entire BRISC design has been loaded into the simulator, but simulation has only been partially
completed because of lack of time.

Ounce the simulator is started, it is difficult to use becanse every signal of interest must be
identified for display, and most inputs initialized. A batch fle may be used to ideatify and ini-
tialize signals, but that seems to defeat the interactive capability of the simalator, and the batch
file is just as difficult to generate in the first place. The simulator is generally used to trace the
values of signals through progressive stages of logic. To do this more and more signals must be
displayed and the circuit stepped a single cycle at a time to trace the behavior of signals. When
an error is found, the simulator must be exited, the drawing edited to fix the error, the drawing
recompiled, and the whole tedious simulation process restarted to get to the same point. A batch
file may be used to return to the same point in the simulator, but if the error was fixed many of
the signals being displayed are probably no longer peeded because they were only displayed to

find the error.

To provide exploratory hardware design, the simulator should interact with the graphics
editor to allow graphical identification of signals of interest. Incremental recompilation should be
provided to allow rapid update. Identification and correction of errors should be accomplished
without leaving the simulator. These capabilities are ideatical to the debugging capabilities

provided by good exploratory programming eavironments such as Smalltalk-803. 8

Even though it is hard to use, the simulator has found about a dozen errors in BRISC that
would have prevented correct operation of the BRISC CPU.

§.1.8. Post Processor

The post processor has been used to find loading errors, undriven signals, and to count the
sumber of ICs {physical packaging) in the BRISC CPU.

Loadlng Errors

The post processor finds loading errors by calculating the fan-out of every logical part and
fagging those parts that exceed fan-out limits. This function of the post processor found about
20 loading errors in the BRISC design, all have since been corrected.

Undriven Signals

The post processor identifies all nets in a design 3nd fags nets that are not driven. Thisis a
valuable function because on a large design such as BRISC it is easy to assume that a signal is
going to be geperated and thea forget to generate it or accidentally use a different name. Some
nets are intentionally not driven, such as the reset inpat that is assumed to be externally gea-
erated. The post processor found over 15 signals that were inadvertently left undriven in the ori-
ginal BRISC design, which have since been corrected.

Physical Packaging

The physical packager assigns logical parts to physical parts and gives 3 parts count of each
type of part. This is useful for Snding the cost of the design, and to verify that the design will it
in the allotted space (e.g. a single circuit board). Exploratory design with the graphics editor and
physical packager reduced the BRISC parts count from 606 to 342 for a savings of 44% as
described in Section 1.2

5.3. Lessons Learned

The BRISC project has been instructive to the BRISC designers in two areas: computer
architectare and Computer Aided Design.

$ Smallels- 80 is a registered trademark of Xerox Corp.

—

-31-

Computer Architecture

BRISC has shown us that the RISC concepts for computer design can be successfully
applied to the design of high performance computers for integer high level language programs.
We have found that it pays to concentrate efort on the data path to shorten the cycle time. We
have also found that the smaller control implied by RISC helps to greatly reduce the parts count,
decrease the cycle time and decrease the design time. The smaller parts count helps to keep the
cycle time down by minimizing both logic delays and wire delays. Furthermore, the simple con-
trol used by BRISC prevents pipeline flushes so that cycles are not wasted.

Computer Alded Design

We have learned that designing computers withoat computer aided design is like writing
programs without compilers. Computer aided design with SCALD allows design iterations for
correcting design errors and for tuning the design without the expense and inconvenience of build-
ing hardware. The SCALD system by Valid has the functions needed for such exploratory design,
it just needs more speed, fewer bugs and a physical design system. Even with these few
weaknesses, there is no way we could have done this project without the Valid SCALD system.

The slowness of the SCALD system may be partially due to the speed of the 68006 CPU
used by Valid. SCALD is a good example of an integer high level language application that could
be enhanced by » BRISC processor.

§3. Future Work

The two designers of BRISC are both interested in continuing the BRISC project. Work
peeds to be done in all aspects of the project described in this paper: hardware design, timing
verification, simulation, and post processing. Once these are completed, then BRISC will be
ready for fabrication.

Hardware Design

The hardware design for BRISC is complete except for a couple of minor portions of the
CPU such as a comparator to detect register-as-memory accesses o the register file. The inter-
face to the support processor needs to be designed, and the ‘microcode’ must be completed for all

instructions.

Even though the design is nearly comple!.e,v we would like to make some changes to the
design to speed it up and reduce parts count. One area that could benefit from [further redesign is
control. While the current implementation of control is logically correct, extra bits have been

included for compatibility with old versions of the microcode and to aid in debugging. Before

— emm——— ca A e ————n

-32-

fabrication, coatrol should be reorganized to remove unneeded bits. The resulting design should
be smaller than the current design (by at least five chips).

Timing Verification

We feel confident that the worst case path has been timing verified and that we have a
worst case estimate for the speed of BRISC. More timing verificatioa is needed to find timing
errors. Furthermore, accurate wire delays shouid be used to get a more accurate estimate of the

BRISC cycle time.

Simulation

Simulation has been completed on key portions of BRISC, but needs to be performed on the
entire design. Our goal is to use SCALD to depasit programs into the simulated memory and
simulate BRISC executing those programs. Such a simulation would convince us that BRISC is

ready for fabrication.

Post Processing

Further post processing will be done to reduce the parts count and to prepare the BRISC
design for fabrication.

Pabricstlon

One design goal for BRISC has been to limit the parts count to fit the BRISC CPU oato a
single S1 Mark [IA wire-wrap board. The S1 wire-wrap board is about 24 by 24 inches and has
space for 325 100K ECL ICs with associated termination resistors and bypass capacitors. > The
current 332 chip design of BRISC can be modified to it on the S1 board with some minor
redesign.

BRISC could be made faster by using 3 denser board that leads to shorter wire delays. A
pew board being developed at Livermore for the S1 Mark [is sach a board. The Mark II board
is 16 by 16 inches and has space for 687 100K ECL ICs (on custom carriers). 3 The extra space
could be ased for the cache. A disadvantage of the Mark III board is that it maust be water
cooled, 50 it would only be appropriate if BRISC was imbedded in a larger system.

Another fabrication technique would be to redesign BRISC using 100K gate arrays. The
resulting design would require fewer chips and would be faster because of shorter wire delays, bat
would be more difficult to debug and change than discrete logic. A discrete logic version of of the
design could be built as a prototype prior to the gate array versiog to debug the desigan.

8. Conclusion

BRISC has shown that a RISC architecture developed for a single chip processor can be suc-
cessfully applied to a discrete logic CPU. The resulting processor can be developed for the cost of
a large minicomputer (about $132K) and yet outperforms mainframes costing millions of dollars
on integer high level language programs. In addition, the resulting processor can be designed
quickly becaase of the simplified architecture and because of the power of computer aided design
tools such as SCALD. As a result, the RISC 1 architecture can serve as the basis for a family of
processors, starting with medium performance single chip processors such as RISC II and progress-
ing up to high performance discrete logic processors such s BRISC. Our experience leads us to
believe that the RISC style of architecture will flourish with advances in density and speed of new
implementation technologies.

7. Acknowledgements

First,] must thank my partner Jeff Deutsch. RISC CPUs tend to make good two person
projects, and Jeff contributed much needed talents to our team. He designed half of BRISC and
wrote half of our report for the SCALD class during Winter 1983. Parts of our SCALD report
have been incorporated into this paper, including some writtea by Jef. Many of Jef’s ideas
appear throughout this papers, including the multiplication and flcating point eahancements to
BRISC.

BRISC would not have been possible withoat my alvisor, Dave Patterson. He helped to
start the RISC project at Berkeley and provided guidance and direction for both the BRISC pro-
ject and this report. I would also like to thank my second faculty reader, John Ousterhout, who
agreed to read this report on short notice even thoﬁgh he had other commitments at the time.

I would like to thack all thoee involved with the RISC project for making BRISC possible.
1 would especially like to thank those involved with the RISC/E design study: Lloyd Dickman,
Scott Baden, Jim Beck, Paul Haasen and Michael Shiloh. Special thanks go to the designers of
RISC/E, Jim Beck and Helen Davis. Both Jim and Helen were very helpful in explaining the
RISC/E design, and Helen was 3 great help throughout the project by patiently answering all of
my questions on RISC and RISC/E. Maay idess throughout this paper are due to Helen's sugges-
tions, including deletion of the register file, redesign of register sddress calculation, and redesign
of the bussing structure by sharing multiplexors.

I would also like to thank Glea Miranker for explaining the SCALD system, and Valid Logic
Systems for donating their equipment and time to the EECS department at Berkeley.

I am indebted to all those who proofread this paper (in alphabetical order): my parents (Art
and Maria Blomseth), my uncle (Bob Blomseth), Helen Davis, Pete Foley, John Ousterhout, and

——————n e — o m——————— . B T Pap—

o34~

Dave Patterson. They ail provided excelleat comments, aay problems left in the paper are my

own fault.
Most of all, I would like to thank my wife, Ginny, and son, Kevin, for putting up with me

going off to school and giviag me emotional support along the way.

References

1.

10.

11

12.

13.

14.

15.

16.

17.
18.

19.

Stone, Harold S., Tien Chi Chen, Michael J. Flynn, Samuel H. Faller, William G. Lane,
Herschel H. Loomis, Je., William M. McKeeman, Kay B. Magleby, Richard E. Matick, and
Thomas M. Whitney, Introduction to Computer Architecture, Science Research Associates,
Inc..

Bell, C. Gordoa, J. Craig Mudge, and John E. McNamara, Computer Enginecring - A DEC
View of Hardware Systems Design, Digital Press, Bedford, Massachusetts, 1978.

Clark, Douglas W., Cache Performance in the VAX-11/780, Systems Architecture Group,
Digital Equipment Corporation, Tewksbury, MA 01876, March 1982

Davidson, Howard L., Personal Communication, July, 1983. Lawrence Livermore National
L aboratory

Dickman, Lloyd, Scott Baden, Jim Beck, Paal Hansen, and Michael Shiloh, RISC(E:
Eztended Performance Processor Design Study, Computer Science Division, Department of
E.E.C.S, University of California, Berkeley, CA, 1982,

Farmwald, Michael, Peraonal Communication, July, 1983. Lawrence Livermore National
Laboratory '

Goldberg, Adele and David Robson, Smalltalk-80: The Langusge snd its Implementation,
Addison-Wesley Publishing Company, Menlo Park, CA, 1983.

Johnson, S.C., “A Portable Compiler: Theory and Practice,” in Proc. Fifth Annual ACM
Symposium of Programming Languages, pp. 97-104, Tucson, Arizona, January 1978.
Lampson, Butler W. and Kenneth A. Pier, “A Processor for s High-Performance Personal
Computer,” in Proceedings of the Tth Annual Symposium on Computer Architecture, IEEE,
May 6-8, 1980.

Mayo, Robert N., John K. Ousterhout, and Walter S. Scott, 1983 VLSI Tools, Selected
Works by the Original Artists, Computer Science Division, Departmest of E.E.C.S, Univer-
sity of California, Berkeley, CA, April 12, 1980.

McWilliams, Thomas M. and Lawrence C. Widdoes, Jr., SCALD: Structured Computer-
Asded Logic Design, Computer Science Department, Stanford University and Lawrence
Livermore Laboratory, University of California, 1982

Miros, James C., A C Compiler for RISC [, Computer Science Division, Department of
E.E.C.S, University of California, Berkeley, CA, 19082.

Ousterhout, John, Using Crystal for Timing Analysis, Computer Science Division, Depart-
ment of E.E.C.S, University of California, Berkeley, CA, 1983.

Patterson, David A. and Carlo H. Séquin, “A VLSI RISC,” Camputer, vol. 15, no. 9, pp.
8-21, September 1982.

Picha, Marianne, DAPL: A General Purpose Microprogramming Assembler Jor UNLX, Com-
puter Science Division, Department of EE.C.S, University of California, Berkeley, CA,
October 2, 1980.

Pier, Kenneth A., “A Retrospective on the Dorado, A High-Performance Personal Com-
puter,” in Proceedings of the 10th Annual Symporium on Computer Architecture, IEEE,

1983. -

Pier, Kenneth A., Personal Communication, July, 1983. Xerox Corporation

Ponder, Carl, ‘..but will RISC run LISP1?’ (8 feasibility studyj, Computer Science Division,
Department of EE.CS, University of California, Berkeley, CA, April 8, 1983.
Selinger, Robert David, The Design and Evslustion of Single and Multiple Processor Office

Workstations, PhD Dissertation, Computer Science Division, Department of EE.CS,
University of California, Berkeley, CA, June 9, 1983.

21

i

24.

Sheil, Beau, ‘“‘Eavirounments for Exploratory Programming,” Datemation, February 1983.
Smith, Alan Jay, “Cache Memories,” Computing Surveys, vol. 14, no. 3, pp. 473 - 530, Sep-
tember 1982.

Sun Microsystems, Inc., Sun Workstation Architecture, Sun Microsystems, Inc., Mountain
View, CA, Feb 19383,

San Microsystems, Inc., U.S. and Canadian Price List, San Microsystems, Inc., Mountain
View, CA, April 15, 1983.

Thadhani, A. J., “Interactive User Productivity,” /BM Systems Journal, vol. 20, no. 4, 1981.
UC Berkeley, RISC I Principies of Operation, Computer Scieace Division, Department of
E.E.C.S, University of California, Berkeley, CA, Oct 1981, draft

APPENDIX A. BRISC INSTRUCTION SET

e dr——

Appendix A

BRISC Instruction Set
Instr. Qperands Comments
ADD S1,52.D D~ S1+ S2 integer add
ADDC s1,52.D D~ S1+ S2+ carry add with carry
SUB §1,52.D D~S1-82 integer subtract
SUBC $1,52,D D e S1-52-carmry subtract with carry
RSUB $1,52,D D~ 52-81 reverse integer subtract
RSUBC $1,52.D D =~ S2-81-camry subtract with carry
AND $1,52.D D~S1&S2 logical AND
OR $1,S2.D D~S1|S2 logical OR
XOR $1,52D D « S1 xor S2 logical EXCLUSIVE OR
SLL s1,52D D «~ S1 shifted by S2 shift left logical
SRL S$1,52D D « S1 shifted by S2 shift right logical
SRA $1.82.D D «~ S1 shifted by S2 shift right arithmetic
LOADW 51(S2),D .| D =~ M[S1+ 52 load word
LOADWR #L,D D ~ M|pe+ #L] load word relative
LOADWS S1(s2),.D | D — M(S1+52| load word special
LOADHU | S1(S2),D | D ~ M{S1+52] load halfword unsigned
LOADHUR | #L.,D D ~ Mipc+ #L] load halfword unsigned relative
LOADHUS | S1(s2)D | D ~ MIS1+52| load halfword unsigned special
LOADHS $1(52),D D — M[S1+52 load halfword signed
LOADHSR #L,D D « M[pe+ #L] load halfword signed relative
LOADHSS | S1(s2)D | D = M(S1+52 load halfword signed special
LOADBU s1(s2),D | D ~ M(S1+52| load byte unsigned
1 LOADBUR | #L,D D ~ M|pe+ #L] load byte unsigned relative
LOADBUS | S1(S2),D | D = M(S1+52| load byte unsigned special
LOADBS S1{s2),D | D « M{S1+52| load byte signed
LOADBSR | #L.,D D « Mlpe+ #L] load byte signed relative
LOADBSS 51(S2),D D ~ M[S1+ 52} load byte signed special
LOADIH #L.D D<3l:13>—#L; D<K12:0>+0 load immediate high
LOADIR %L,D D « M|pe+ #L| load immediate relative
STOREW | SD1(D2) | M[D1+D2| — S store word
STOREWR | S,#L M|pc+ #L] ~ S
STOREWS | SD1(D2) | M[D1+D2}| ~ S store word special
STOREH | S.D1(D2) | M[D1+D2} ~S store halfword
STOREHR | S,#L M|pe+ #L] ~ S
STOREHS | SD1(D2) | M|D1+D2] — S store halfword special
STOREB sD1(D2) | M[D1+D2} ~ S store byte
STOREBR | S,#L M|pc+ #L] ~ S
STOREBS sD1(D2) | MD1+D2} =S store byte special

Appendix A
BRISC Instruction Set (continued)

Instr. Operands Comments
IMP COND,S1(52) | next pe «~ S1+52 conditional jump
JMPR COND,#L pc ~ pext pc + #L conditional jump relative
CALL D,S1(S2) D «~ pc; call
pext pc «~ S1+S2, CWP-
CALLR D,#L D «~ pe; call relative
pext pc ~ pc+ #L, CWP-
RET S1(S2) pe «— S1+ 52, CWP++ return
TRAP D D « pc; trap
next pc + trap vector, CWP—
CALLINT | D,#V D « last pc; hardware interrupt
next pc «— #V;
disable interrupts
RETINT S pe ~ S; return {rom interrupt
CWP+ +;
enable interrupts
GETCPC | D D -~ pc get current pe
GETLPC | D D ~ last pe get last pe
GETCWP | D D ~ CWP get current window pointer
GETSWP | D D ~ SWP get saved window pointer
GETPSW | D D ~ PSW load status word
PUTCWP | S CWP «~ S put new current window pointer
PUTSWP | S SWP « § put new saved window pointer
PUTPSW | § PSW « S put new status word

(1) S, S1, and S2 are source registers and specifly one of RO through R31. RO is always zero.
$2 may also be a 13-bit immediate value specified as # CONSTANT.

(2) D, D1, and D2 are destination registers and specifiy one of RO through R31. D2 may also
be 3 13-bit immediate value specified as # CONSTANT.

(3) #L is 2 19-bit immediate value.
(4) #V is 2 hardware generated interrupt vector.
(5) COND is a jump condition and specifies one of:
none jump always (unconditional jump)
ne jump il not equal
eq jump if equal
ne jump if no carry

¢ jomp if carry

no jump if no overfiow

v jump if overflow

it jump if less than

le jump if not greater than
g jump if greater than
ge jump if not less than
los jump if lower or same
ks jump if higher

] jump if plus (positive)
m jump if minas

no jump never

e ———n b

APPENDIX B. COMMERCIAL CACHE SUMMARY

Appendix B
Commercial Cache Summary
SET SIZE LINE SIZE | CACHE SIZE
MACHINE (words) # SETS (bytes) (bytes) NOTES
Amdahl 470V /6 2 256 32 16K 1,3 4
Amdahl 470V/7 8 128 32 32K 1,3, 4 14
Amdahl 470V/8 4 512 32 84K 1,3, 4,14, 16
Dorado 2 258 16 8K 5,615, 19
Honeywell 66/60 4 128 16 8K 2
Honeywell 66/80 4 128 16 8K 2
IBM 4331 4K
IBM 4341 16K
IBM 370 158-1 2
IBM 370 158-3 4
IBM 370 168-1 4 128 32 16K 2,12
IBM 370 1683 8 128 32 32K 2,12
IBM 3033 16 64 64 64K 2,7, 8,12, 14, 19
IBM 3081D 128 3K 1,8
IBM 3081K 128 64K 1,8
Itel AS/6 4 128 32 16K 2,8
Magnuson M80/42 16K
Magnuson M80/43 32K
Magpuson M20/44 16K
NEC ACOS 9000 128K
PDP-11/70 2 256 4 1K 2,9
RISC/E 2 64-1024 16-128 8K L1
S1 Mark Oa 4 5120 72 90K 1,11, 17,18
VAX-11/750 2 K 2,8, 10, 15
VAX-11/780 2 512 8 8K 2, 6, 10, 15

Note 1: Write back.
Note 2: Write throagh.

Note 8: Hit ratio over $8% measured in user mode, over 95% is supervisor mode.

Note 4; +-byte data path betweea CPU aad cache.
Note 5 Hit ratio over 99% messured.

Note 6: No write allocate.

Note 7: No reorder.

Note 8: 8-byte data path betweea CPU aad cache.
Note 0: 2-byte data path between cache aad memory.
Note 10: 4-byte data path between caache aad memory.
Note 11: LRU allocation.

Note 12: Modified LRU allocation.

Note 13: 85%-90% Xit natios measured (with 30 to 40 wen active), 95%-99% hit ratics calcaiated.
Note 14: Fetch bypam.

Note 15: Prefetch.

Note 16: Prefetech oa miss.

Note 17: Virtual addrese cache.

Note 18: Muktiprocessor support usiag cache coherence.
Note 19: One write bafler.

APPENDIX C. EFFECTIVE CYCLE TIME CALCULATION

Appendix C
Effective Cycle Time Calculation
MEMORY WAIT | EFFECTIVE CYCLE TIME (ns
PROCESSOR TIME (ns) 100% cache hit | 90% cache hit
400 73
BRISC A 800 37 113
1200 153
400 81
BRISC B 800 46 121
1200 161
400 97
BRISC C 800 63 137
1200 177

Oaly two values for it ratios are showa because kit ratio versus efective cycle time is a linear functioa. The func-
tion wsed to calculated the efiective cycle time i

effective cycle time = (bit ratio)(cpu cydle time) + (1 - kit ratio{memory wait time)

APPENDIX D. BRISC PARTS LIST

’ Appendix D
BRISC Parts List
PART QUANTITY 1-100 PRICE 100-1000 PRICE FOWER
NUMBER $ EACH | TOTAL ¢ | $ EACH | TOTAL $ | mA EACH | TOTAL mA

100101 6 5.08 30.48 3.61 21.66 38 228
100102 86 5.08 436.88 361 310.46 80 6880
100107 3 7.07 21.21 5.02 15.08] 288
100122 13 5.58 72.54 3.96 51.48 96 1248
100136 16 24.08 384.96 17.07 273.12 283 4528
100141 4 12.15 48.60 8.62 34.48 238 952
100150 47 12.15 571.05 8.62 405.14 159 7473
100151 10 12.90 129.00 9.15 91.50 210 2100
100155 53 15.50 899.00 11.00 638.00 133 T714
100158 18 19.34 309.44 13.73 219.68 205 3280
100171 25 12.85 316.25 8.98 224.50 114 2850
100179 1 15.50 15.50 11.00 11.00 220 220
100181 8 25.54 204.32 18.13 145.04 300 2400
100422 39 32.24 1257.38 22.80 889.20 200 7800
TOTAL 332 $4696.59 $3330.32 49,753

Note: Prices quoted July 1933 by Hamilton-Avaet for Fairchild parts. Power figures

DATA Book exceps for the 100422, which wes the Fujitsn 100422A-7 power figure.

are from the Fairchild F100K ECL ~o

——————————

APPENDIX E. BRISC DRAWINGS

3 _'L_’ 2 | ot

8] 7 | 6 | 4]»
—_— — - P, et e [-
RBUSC3L. . D>
RFACIL. . B
RFB3L. . 0>
Y (0" 13- YO - 1%
r~—___ TP
ALY
PATH
s - — -
14P -
{au s - —_—] ——-——‘n/_
- 1P)
(2 V] -
LITERAL 1sP
L , DATA . ——
o po}—-- 1] R il o
PCs AND LATCH 1 A~ -
ADURE SS CBUS<31.. 0
CACHE » RESAT
LATCH
. CACHE —
HO1 ADDR ADDRA o DATA o 10P —
LATCH
REG AR - ’a\
20 [N I}
C SHIFTER
v
D pam
")
6P
. ET
ADDR/ DI .- Se
B ouUY
REGISTER
FILE [: 3
RFA OUF | e e e o] r—
REG A3 HEM
ADDR
SPECTAL o]
| REGISTERS
DEFINE DRAWING e Tt
X_FIRST=@ BRISC
X_STEP=SIZE beasc)
LAST_MODIF EED=Thu Jul 14 23:56:06 1963 TITLE: BRISC DATE: 2,18/83
[ERGTREER:™ ~~ ~ ~" T T R VY
R Blomsdth/J Deutsch 1 af 1
. 2 T 1

s 1

PCN pce PCL
EY{ e
a2 » 0 . 00
) QUTC3L. . 2 NI o -2 ® 5P
ALl <3t.. 2> ___L .
X Pa1-e On-e PCC OUTC3L.. 2> Il PCL OUTC3L,. 2>
PCH FNG2..8 NG . B4 0,,.1D | -
= ot HCN OUT<31.. 2>) g
couniitl 160151 100151
ut(£ w”) 8 L LIrird) L ITIIT L]
CLOCK OUD 1CB-S G L, I = y e
RESET \G
PCLB TO RBUS OEx \G
v — — RBUS<3L, .8]
oo _/
PCCB 10 CHUS OCs \G I.
aLp
[4
PCCB TO RIS OEw \G
) T T TooTTmrTm T o3z, RBUS<3L. . B> \1
32
08 \}49
" ooren d
w 180155 CAM OUT<AL. . B> N1
KN N
AU OUT¢31. .8 NI 5 160
2 NCs \R 23
CAL OUT¢IL. . B [CAMNKB. . D u
m
CAL LEs G 200 _
HCe \R 2
Q.0CK ODB 1ICB-5 » \G -

a2P
0 v —
47 o __
L enial — .. REG-AS IEN ADLRCB. . 2> \§
6P v

CAR SEL NG % | ‘

REG AS MEH ENABLEX G \R 7

N e e e er——

PEFIrE _DRAHING
X_FIRS1=0 PCS AND AULRESS)
X_SIEP=512E pca . nne , DATE:
PCa AND ADDRESS 2,20/83
LAST 1ODIFIED=0n May 9 23: 16:00 1983
TNCIREER: PAGE:
RICH ‘BLOMSETH Lol

: | g 1 : [R R a | : [.

RBUSc3L. .8 \1

328
21 w
o8 0w 2 CACHE DB OUT<31..® \I
- L
P 2) - 199422
cAr oUT(3L. .8 NI NC 68 e
- 1 R
a woaid
&0
HE CACHE® \G
FAST QLOCK 1C7-9 « \G
e . THIS DRAMING IS USED ONLY FOR SIMULATION
- CACHE . '
X_F IRST=8 ' :
X STEP—51ZE cash IT 1S NOT THE ACTURL CACHE
N - LAST _MODIF1IED=Mon Hay 9 13:37:83 1963
TITLE: - DATE:
CACKE 2/27/83
: ~IéacE:
RICH BLOMSETH 10f1

- [: 1 :] ‘ | : 1 : 1 1

NC \R 3
ae CAM SEL \G:PSW ISEL \G
\NG: N\
o T 9B 0B - o G
CHAL SELCL. .8 \G: SHP SEL \G
1op 1P MASE 4 1ap
CAQE DB OUTCIL. . 24,13 NI PUASE 3 LATCH 0uT¢B. . 0> R NC \R 1
11 oy an
‘1) F —— DE CONE 5= NC AR L
18015 100150 RN 100150 NC \R L
varen e Lavn
. -] B] L] REG AS " Ery
“_ﬂ e “i—i_\F —1 S rEN ENGRLE NG
[] by m NC \R 18
QLOCK EVEN 1C5-10 * \G
A0CK ODD ICB-5 & \G
[o NC \R 3 .
RESET NG
¢ R = . NC \R 2
NC R 3
5P CAL LE=» G
¢ S (5.
- LOAD PCe¢ G
ANse 3 . SH RIGHTING
L FIND. . BNG PCCH 1O CHUS OEe \G
” LJE PR -3 R
becoue 248 REG AS HEN ENABLEw G
SYS CHNY FN(2..8) G
a 14P WE CRO€* \G
— USR CHPIE FNC2. . @ NG oL 1Ee G
S - N\
" ity b GPL FHCL. .ONG I \
— _ . \R
o [4 1201 5a LS SEL<L. .0 G 1w
ey S OLEe \G
NC \R 1 o8
_ AU OUTLAICH® \G
NC R .
CHAL. 0w \G
] NC \R |}
[T 3 . S OEs \G
NC AR 3 : SBARC2..03\G NOT USED® :RESWLT Ofs \G
HC \R 1 PSH OEx \G
NC \R 4
SYSFLAGSLOADe G
HCON\R 3
ALUFLAGSL OADK NG
HC \R 3
7 QL 1Es NG
NC \R 2
o#L IEe \G
NCONR 2
WP OEs NG
RS LATOA O \G
O¥H OEx \G
ALY CARAYINe \G
8v3 1E« \G
MC R L
UsR 1€s \G
3]
LEFING SBRAMING
o CONTVROL
X_FIRST=0
ctri
X_STEP=SIZE
1P LAST_NMODIF IED=Mon Mey 6 13:30: 47 1803
‘_l,,, PIPELINE CONTROL gyaq b_ : :
'IL MASE 3 1Ee l Tine: DATE: .
- : contro 321,683
ENGIREER: t) N PAGE ; e
RICH B OHSETH AND JEFFREY T. DEUTSCH Lt of s
e l ’ [(0 | s | . I 2] 2 | ¢

PASE 3 LATLH

PHASE 4 LATCH

ARSE S LATCH

2 | 1

GET OR REL OPCODE ~G

AU RISEL \G
SRC | FORMARD \G

SRC 2 FORWARD \G

INSTR It BIT G ALU BISEL \G

T
GET OR REL OPCODE \G B_)f_" 3

's28
P

PHASE 3 DECODE OUT(S5L..8>

S28
\SP

PHASE 3 LATCH OUT«B..@> \I ?
620 ar

e)
ap

SRC | FORUARD \G ‘.b‘—
sa3p

PHASE 3 LATCH QUT«?> NI

i

i3

PHASE 3 LATCH oUT<8> NI GET OR REL OPCOLE \G

| ar Sap
PHARSE 3 LATCH OUT«® I N% INSIR 1m#1 BIT G
A9P

PHASE 3 LATCH OUT<®> ® \I INSTR It$1 BIT» \G

a -
B(S2)_Jiee

LEFINE
X_FIRST=0
X_STEP=SI12€

(¥

AP
128

kX o
408

21p

e o
408

_DRAHING
PASE 3 DECODE RAM
PH3DCD
LAST_HODIF IED=Had Jun 29 18: 46: 00 1963

NC \R L

NC SR |

1ML SHORT IMMED NG
NC \R |

RAGEN RSET \G

SREG SEL. \G

CALLT OPCODE \G

NC R |}

PIPE CONTROL<2..8> \I
NC \R L

\R 1

ISEL<L. . @ \G
ASEL¢L. . @ \G

\R 1

\R 1

\R 2

\R 3

R L

xR 3

AL_U/SHIFT OUT«23..8> 1
PCLB TO RBUS Ofx \G
PCCB TO RPUS OE = \G

FRERRAREYLE

FORWARD ENABLE® \G

\R 1
IREG IEx NG
ALU RIEW \G:ALU BIEx \G
94 ILEs \G: SH AEw \G:SH 1Ex \G
SH SIGNEDx \G
NC \R 3
NC \R 24

TITLE: ORTE:
PASE 3 DECODE RAM 3/21,83
L J— P
JEFFREY V. DEUTSCH ARD RICH BLOMSETH : i oF
° | i i s | s J I 2 | 2 I !

7 | 3 I s | 4
[}
’ c
] . :
AIASE 4 DECODE OUT(28..@> \1
Q30 —(hes -
27 180422R7 -
. 3 —_“ ’
88
w ; ’
@: PHASE 4 LATCH OUT¢H. . B> NI l>
- RSN P U
\
' B
.

DEFIE. _ UBAHING
PHASE 4 DECODE RAvt A
X FIRSY=-@
ph4acd
LAST_MODIF IL0=ked Jun 29 18;: 47: 48 1983

K_SIEP=SI2E

TITLE: DATES
PHASE 4 DECODE RAN 3-22,83
i R T/ Veace: - T
EHCTRE RICH BLOMSETH paGE Vei
’ 1 8 | s I 4 | 2 _l 2 | ' _

PHASE 4 LATCH

PHASE § LATCH

| PHASE 6 LATCH I

ar
teP
F
LOAD PCe \G g PCN FNC<2> \G
- Qf— reen
PCN FNCL> NG
PCN FNeB) \G
I I}
19p
ar

QUICK HRITE INHIBIT G

SRC REG SELECT \G

ap I~ e i
o 18P P 3TSP
HE REGFILEx \G
s f % R ——
100155 o " o T = . L29) pl
"
PIPE CONTROL(2..8> \I L o) B Y o 16P
. o2 Y oF o Ns 4 . 1E+ \G
L e] D o) S o . B 6
™) -+~ ofy e
o a5 s N IL PHASE 3 1Ex \I
100150 190150 21p [7<’
] et o Larcn
<] o 8 af
5.1 Lo
QLOCK ODD 1CB-5 % \G RAGEN PIPE FRLEZE G
Q.OCK EVEN 1CS-10 & \G
FAST CLOCK ICT-9 & \G
RESET \G
DEFIE _RANING TINE: DATE:
PIPCLINE CONTROL PIPELINE COMTROL 3/16/83
X_FIRST=0
X_STEP=S1ZE pipacte FERGTREE R, T T T T T T T TR
- LAST_MODIF IED=5at tay 7 23:33:46 1963 ’ RICH BLOMSETH P tof

I

I s

I .

3 L

2 [1

CACHE 08 QUScil. . B> NI

) | 7] 6 s] 4 3 2 1
CACHE DB OUT<1B. . 13> NI 1He
ar »
LITERAL OUT <¢3L.. 12> N1
132 up >
. 78
CAQE DB ouTciar NI [Btae
- - Lexieno T
I SHORT IMHED NG
I LONG D \G
I, 1Es G
A OCK EVEN 1C5-10 & NG
‘
120
(1

LITERAL OUTctl. .o NI

ESET \G

piani: A
X_FIRST=0
K_SIELP=512E

JRAING

LITERAL DATA L ATCH

(]

LAST_MODIF 1E0=Sat May 7 23:54: 31 1963

TITLE:) DATE:
LITERAL DAYA LATCH 227,63
ERGINEER: - PRGE :
RICH BLOHSETH Lo L
s I ’ l 6 i 'I 4 3 2 1

- ———— - "

D
1]
[d c
CLOCK ODD 1CO~5 » \G
328
328
e =
] CACHE DB OUT¢31..0> 1 0 \R 32]
od- S S) COL OUYT¢3. .0 NI
ay .
100158
CDL 1Ew \G Larca
—Hk ,
QOCK EVEN 1CS5-18 * \G l
B B
RESET \G
A A
JECING _LRAKING
CACHE DATA LATOH
X_FIRST=0
cal
X_STEP=SIZE
LAST_MODIF IED=Sat May 7 23:57:50 1983
TITLE: DATE:
CACHE DRTA LATCH 2,21/83
[ENGTREER: PAGE:
RICH BL OMSETH L of 1
1
1) 1 s il 4 3 2 —]

0 I | 6 | 5] : 1 3 | 2 | '
an
CACHE DB OUT<23..19> \I IR WRITE PIPE OUT<4..D>)
—_ S P q - — REGISTER
RAGEN PIPE FREEZE \G REGISTER FILE
"L BER RAN
HRITE
RAGEN RSET \G PIFELINE 21p 28
o 2600 B 328 21P P ~
- R IHSTR 1M BIL NG e rﬁ&ﬂl_/)__ = B T e N
———-f REGISTER RBUSIL. . & NI LExteno |
CHCIE DB Ot <4, . @8> NI MUMDER _EOIMORD EIOBLEE NG 1 dra o — -
V] § 19¢ §
LATCH REGISTER SRC 2 FORLARD \G
- —10 ¥ —_—
- SRC 2 NMABERC4. . O T rwwen ST 3 FOIINDE <G
. or .
—f —(CULL W]) novecy
—_— g TALL - —
s b-,, H"aopa B REGISTER
T e h o ADDRESS
RFILE B REG MNIBERCA. . ©) DRIVERS
- odal
D ADDRCT. . B
(e A .
R a3
e
(-)
U
B o 2
e RO A m —_1_ rFa auraar. e N1
REGISTER Fomin tRBER <G | '™ 1 —f St |- mmazm]‘-'“ .
CACHE DB OUTC1B.. 14> N\ FBER T} __ i
I I T R per 6P S
LAICH HREGISTER O SRC | FORWARD \G
. SRC | MEIBERC4. . 0> ;' NRIBLR 1 - SRC 1 FORLARDe G
| e (Junen s)r—; IRTECTOR
})
bis L 221 B
2}
e REGISTER
P N P Jaova al 11 1 L
ADLRE SS
RFILE A HEG NIBER(A. . @ DRIVERS
Tt A ADIRCT. . @)
ReG-as-reR ADDRE B <1 il
TP @B, . B 6 11 e
THP-i(8. .6 G e
SYSTEHN MOE G Tt et
OE
ME REGF ILE® \G
} _LAHING il g I e
ELASL - AEGISTER FILE
X_FIRSI-@ révle TiME: - DAlE:
X_STEP=SIZE LAST_MODIF IED=teG Jun 29 18: 48: 18 1963 REGISIER FILE 2,23,63
ENGIREERT ™ * i sacE: T T
RICH BLOMSETH Lol
e | [8 [s] ‘ { E |

2 I

RESET \G

AXFIE
Xx_F1RST=0
K_STER=S1ZE

S8 S8 S8
WP P-4 »
CACHE DB 0UT<23..18> \I DEST LATCH @ Qc4..9> — DEST LATCH | Q4. .M e - WRITE PIPE OUT<4. .8 \I
—— nl —_—
D D
108150 100152 108150
N Lane Y112 LArcH
[J— —_—
—q ¥ — , i $) N
RAGEN PIPE FREEZE \G 48
AN
b —
£ T
CLOCK ODD 1CO-5 » \G
CLOCK EVEN 1CS-10 % \G
oSP
RAGEN RSET \1
B Jleer

_IRAHING
REGISTER NMUMBER WRITE PIPELINE

rnwp
LAST_MODIF IED=Sat Hay 7 23:07:42 1963

TITLE:
REGISTER NUMBER WRITE PIPELINE

DATE:

2/23,83

[ENGTREER:
RICH BLOMSETH

1Lof I

| s I N | 2 1 2 l

CLOCK EVEN 1€5-18 » G \R 5

DELST HNBER4. . N1

CLOCK 0DD 1CO-S

R
Wi

—_—

r-is
18
22p

A ILE REG NBERc4» N

21P

JSPf-“

(EST Tce..

RFTCEREG HOMBERTH & <IT

0P

18
24P

T
[
Q.OCK QLD 1CB-S » \G \R 5
(¥4
SRAC 2 FORNARD G ,b
3 sB
Sb
2P
14P
SAC MANL.R4, . & N1 S S
B PR — _.___,_g{ s)
20P 100158 I

RAGEN PIPE FREEZE N1

- __pT*

QA OCK EVEN 1C5-10 & \G

G (S HEN bt NG

CLOCK ODD 1C0-5 » \G R S

SRC T¢a. . B ,_/___..
‘ N\

AFILE REG NINBER(D. .0 1

LATCHED SRC MMBER4. . Dy # L

58
1 o

SRC 2 FOI¥iDe \G

OVIER REG NMNIBER4. . B>«]

190

1B
I ’ AT SRC T<4..0> zaprL.____.
| A LR R

RENE
K. FIRST-08
X _STEP=S12E

AROHING
REGISTER MMBER INPUT LATCH

ol

LATGIED SRC MMBER4. .0 NI

LAST_rODIF JED=Hon Hay 9 18:42: 42 1903

TIneE: DATE:
REGISTER NMRLER 'INPUT LATCH 2,24,83
ENGTHEER: o e ot N encer
_ o . i, RICH BLOHSETH 4 af 2
o [T]) | s il 4 | 3 | 2] 1

- e

) [7] 6 I s l 4 l 3 l 2 '
15p
1M DISABLE NI
o CLOCK ODD 1CB-S & \G
e D
21
s8
WRITE PIPE OUT<4..8> NI ror 6P
] ree REG FORWARDS I
SOURCE (4. .@> \1 S, — —— o — I - REG FORWARD T
3 . .. T
- 22p —
a1p
23p gl
ot L
A < 1oete,
-)
FORMARD ENABLE » .1
c b . c
— -
P 67
[il 24P
RFILE REG MUMBER<4. .8 1 . /—~“~—*~- . |
- 5) SOURCE €0UAL ZERO \I
Lot T T e
L —rH 4 rord
8 B
2
— P -
GLOBAL I
o (o)
A '
Jrasis _OREWHING ¢
REGISTER NUMBER DETECTOR
X_F IRST=8
rng
X_STEP=SIZE ~
LASY _HODIFIED=Hon Mey © 18:53:SS 1903 TIE BATES
, REGISTER NUMBER DCTECTOR 2/24/83
FENGTREER: - : PaGE: -1
RICH BLOMSETH L of 1

8 1 7 T 6

E) I 2

SYSTEN noE NI

[%/
CHP-148..8> NI 4
— RS ,\)
R ILE REG NRBER(4> NI
- b=
38
168

REG-AS-HEN ADDRB. . 6> 1

“G@OBAL \T R 3

A ILE REG MUNBER< 4> w N1

B, . 6> \1

HEG-ASTEN ADDRS. . @ \I

130
38

R ADORCT. . 8> \1

S
|
|
i

mwP
6P r_ vomcagd
a1
48 14P
[ad 4B
L Vi
14

TRFICE REG NOHMDER(3.. @ N1

ELA; .
KFIRST=8
X S1EP=s§2E

_DRAHING
REGISTER ADDRESS (RIVERS

rad

LAST_MODIFILD=ron Hay 9 10: 48: 13 1863

TITE: DATE:
REGISTER ADDRESS DRIVERS 2 21,03
ERGTREER: AGET
RIGH 'BLOMSETH i af o
3 2 l 1

[}
1]
8
. = ALY CARRYOUT \G
aly carryouts\G ’
ALUFLAGS
% B9
-] &
a®<31..0\1 S~ res
c i t .
100155 F B> 0 R <
al<3t..\T B o),
= 1981 ©
alu a18@iNG e o a
™ out«3l..o\1
e T>32 B11 Al ’
aiu a1e\G 1
_ ki U |
CLOCK ODD CB-5 # \G o
alu outlatchs\G
- — 8lu carrygina\G
;] alu fnc3. . O\G B
e]
b@c3L. . O\1 ~——
-
180155 >
[IRE TR AN | L ol
P @R
- alu bi3einG -~
alu DIes\G
Q.0CK 000 1CB-S » \G
a RESET \G A
DEFING
ALUPATH
X_FIRST=0
- alupath
X_STEP=SIZE
LAST _MODIF1ED=Fr1 May 13 i86: 17:189 1983
TITLE: [DATE:
aslupath 2721/83
[ENGTREER: N PAGE: .
Jaéfray V. Dautsch 1 a0f 1
| s | 4] 3 | 2 v

R B

] 3

Qe
LI L yseyney §s0f - SV
'Vd} e e o MAMIOND
EB/LT/E ciepyme
T 23U
€061 66:20:08 8 fou ung-03ITIIGOH ISV
IZIS=dIS™X
O) A
SHIVLNY 9-iSNId ¥
“HITAIEY FTIX
u
q
[3C-NLE :.nn%
1
o NN G E
LG E R T [Se— 1
- 7 o g o 1N TErwep
- |
1 o5 =) I
a9
__oNnofigsea nye ?
C agrwiep
K
1\qubre
d. Ihsufhe
1
ouffie nje == [a(1Ere1En
0l
(]
' | 2 | e] y | s l ° o

s [s I 4 | 3 | 2 |
pPeD
D«
G q¢31.. 200 1
Jeai8) oy
LX)
[
I (ﬁnnb‘o‘ N 3¢3..00\1
|l p<Brx
g(S)t
8¢27. .24 (»
SCam qe27. . 20\1
10018] Qpof——————
aiwnr. e
B27.. 24> "E“
'
CHneBrn Enasblas N1
R Y 1Y ‘
— (SE
e L Pee q23.. 281
100181 Qoo
Sronay 0CR
'
be2a onfa] Cip e
nablas \1
pLHHw
Q4K P
1881709
[t
Lowenrans
Q<19..160\1 pMZ (T N . wtand
e o
cml
o 1k
Cucd
cincdrs ga__m.x__c.;,_.
ptIHrw Lo
P X
q¢iS. . 12>\1 arry wnx\l
p2>m
g(2ru
w
o qall. . 8>\
100181 oo}
Dunarncn
-“u
belt A [’-~-é,
cintrm naplew \I
- plrw
—— geHrm
(L4
B2 4 Peess .
106181 Q7. . o1
siaoce
Cyy 520 _DRFAHING
e T Bnavies 1 EFDE BT s
- - X_FIRST=0 2pALu
h X_STEP=S1ZE LAST_MODIFIED=S5un May © @3;11:57 1883
aP
arld . Mm P
Sy 4¢3, .o TITLE: DATE:
100181 0uy)
nn:;a;: 32 BIT ALY Fab 2 1983
bed e Codag s y - -
carcy et 4/?,—[nablas M ENGIREER: Jaffray T. Deutsch PAGE: 4 a6 1
i 4 3 2 1
8 I s il l I |

o l | 6 | 5 | 4 | 3 | 2 | '
av
Sap
SH RIGHT <G l: F Si RIGHT
44pP) |
18 18
sh signedeG ¥ H2P 1P
320
) 4
— _.....;S D;,“-[__.__ Cé:ggu l__._w
. 168
45P
as
_ (ﬁ]w N
ETE et R
0P . 1e s3P 130
N
S —_
J— — [
oy e o} nc I out(3L. @\’
P oy af- nc ——
nar ™ of- n¢
. g: :‘ - NP 32 811 o)
L e °:3~r REVERSEH
0, Q,
o I~ ST mr i RIGHT
— i ST <6
ah olee\G o
-« [-
o ——— \“_ S——
LA IE A TR
-:l::l.._a)\i 32 BIT - >] . »
n23l. . \T HEVERSEN = B -
< EIAC I T » -
BF S RIGHT
RO §
L] Y [——
[T
34P
k¥ e
#5
(—_,[/f;-
AEFIE. AAHENG
o X_FIRST=8 LAST_HOOIFIED=ron Hay B 1S:41:24 1883
S0 X_STEP=SIZE VITLE=SHIFTERPAIH
ABBREV=ahpath
2 nee o [
] TITE: DATE:
RESET \G st fterpath 2/26,-83
B ENGIFEER: * PAGES
Jeffray 7. Duutach 3 af)
o | '[_ 6 | 5 A 4 r _._.,l. - a])

out<h. . 31: -I>\1

ke

1n<3L..MH\1
DEF INE DRAWING
TITLE=32 BIT REVERSER
X_FIRST=0 ABBREV=32BREV

X_STEP=SIZE
LAST_MODIFIED=Sun May 6 90:28:29 1983

\ 2 — € _“ s
Vg0 ydeynag | fiesjseg
1 30uUd i SHIMIINI
. JeqIOMm JBIFIVe
i cass2se
. ua g Uit
' ”
1
€061 v2rcea @ Moy ung=031.410007 15U 321S=dIS™X
WIILAG B-1GH1 47X
HIMHOM T AIVE
" G ’
- SR LP] .I.W 1NQ e
S -
TA!
N@ryyng —— ————(uf - N
N([r}00 P e af - -/Aw::
Negrine —— - [@————— & g4 M- pN@run
<Eryno — P4 N AN A
N(pring ———= TN
N(Gryno TN egru
Ngryyno T . WAL o NGrus
a N2 e — 't L B A AT
—
— INe® " "2r08q€
or
. “/Anv.:
1 T EN¢BIUr
- T INt@iouy
S NaIwm
T INeyru
T INtEDOIUL
- /3«!.:
~ ENeg U
2
i
a
1 | e | 3 | v | s

aP
1n<B3. . 58>\1 —= out«?, 15, 23, 31, 39, 47, 55, 6B \]

™

1n<S5S. . 48>\1 oUt (B, 14, 22, 30, 38, 46, 54, 62>\ 1

&P
inc4?. . 40)\1:—___. out<S, 13, 21, 29, 37, 45,53, BI>\1

SP
08, A>T == putcd, 12, 20, 28, 36, 44,52, 68) \1

-

1031, . 201 out«3, 11, 19, 27, 35, 43, 51, SB I

»
€23, IBXNT T out(2, 10,18, 26, 34, 42, 50, 58> \1

>
nelS. . B\l == aut«l),9, 17,25, 33, 41, 49,51
P
ne7, . N = aut<D, 8, L6, 24, 32, 40, 48, 56>\1

JEFINE
X_FIRST=0
X_STEP=aize

ABAHING
SHIFTER MIXER
S TR

LAST_HMODIFIED=Sun Hay ©6 BO:3S:14 1983

TITLE:

shifter mixer

"

DATE:
2,25/683

jn“’ruy T. Dautsch

3 I

2

] . H -4 — € — L4 — m: . M B 9 — L —

LI LI HiI5H0E HOTH :
- L 20 I — LUk]
€6/68/5 AU 141G
3190 IR

I~ 104

€6t BEEE 1T 68 Aoy va=a3T4IgoN ASY
A2165=dILE "N
freyyge

- 2= 1591 § % .-
A fane i ’ i — N @ e
: HIIm iots ¥

e N

1IN @ e ' . - | I

IN @°ED0

DAL . NT L

SPEC REG IN LATCOH<3. . B>

2r n1¢3. N1

sreg 38 I\G

sreg 1e« G

»
PSH OUT<3L.. 0>
[2e 3
P
328
- o4
P r"l O 0UT<31..0» L—— 1 out¢3i. .1
——]) O
sP
SAVED WP SP 0UT<3L. . B

CEFINE _ARAHING
X_FIRST=0 SPECIA. REGISTERS
SPECREGS
A_STEP=SIZE

LAST_MODIFIED=Thu May 12 11:45:38 (983

TITLE:
spacial ragiaters

Jeéfrey T. Duutsch

DATE:
3/411/83

“1o0f1

T SR I

3 | 2 |

1

) [) | & 1 5 | 4] F) F} | 1 _1
o
C
Ty
SYSTEN rO0E G
?u’ — "o T T - - -
aystem (lagacd. . @G J {gP
h ’ SYSTEN NOOEs \G B
7. 4Nd Sy S
]
paw 1301\G L ap "
RESET G Tt T
o aisiTRavicede— G ___.i._.:g i D240 —>_‘ eut«dl. .01
psw sysfisgsioads \G - % — B
Eock EERTICETIE * <6 D e L)
N oe
alu carryout G : alu 31gn\G : alu puerfilowG : alu ZeranG
(1115 NN - JAN § -
paw 19@I\G
RESET \G
pow slufingstoads \G
GLOCK EEN 1C5-10 » NG
L]
LEF I _LBAING
ésp X_FINgT=0 g&
p3w ves \G 1;‘;: X_STEP=8JZE ~ N .
- ;M.—,A#_*.l OAENY LAST_HODIF IED=1on Nay 9 L16: 15: 34 19683
¢
TIme: | oare:
pow 3/141/63
TNGIREER ™~~~ - TTT T T T The e
faffrey Y. Dautach L of 2
0 — - e —— f-— [—_ L
[; [‘ [: I T 3 1 : 1 .

X_STEP=SIZE

I s l 4 3 2
1 ¥ h
ystem c
. & Sp Il wp
(LT TR PN 9 s q‘._ﬂ._‘
oys cuph #NC2. .M \G b I_S'EW
ays cuph oex G — Che
aP
4P aun
DU ™ N
‘>__>J. out(31..e\I
a2y,
24
usaer cwph
vo-e Oye-of
usr cwph fnc2..H\G o
CLiPH
usr cuph oax\G _— e (s
aPr
"n carry
cupl Fndcl. . ON\G ‘ 20 borrow cwp carrysborrowG
n
sys cup! 1e%3G 12 out
p—— CTVLL e
usr cupl 1ae\G CW .
—_— —__—(Juarid cuwp
cupl selcl.. ™ \G sek] cupB. . 6> G
cwpl 0ea\G cup-14
".'p—______._c oe WH S — cuwp-1<8. . 6>\G
JXEINE -DRAHING
X_FIR3T=0 e
P

LAST_MODIFIED=Sun May B BO:38:85 1983

5

TITLE:

Current Window Pointer

FRGTNEER: - 7

Jaeffray V. Dautach

DATE:
3715683

1 of 1

3

2

1

S] 2 | € | v 1 S | 9 I L] o
LILIN BN udsineq -1 fimagyef
- R - e . — _Suazummia
€8/S1/€ YD
T L_3uu
cunt SET91 68 fivg umi=031 410017169 .
I7IB=HE X
ydma B= ISHI 4%
< =] .
BHTASHT NI
Y o
_ i
Aot
a9l
o2)
12
e ﬂl«|i o 1353 "
11
<4 0N 5-8)) 0N0 HDO'D
Qn ks SN
HIINNO:
. 1ia 91)
1N <@ ‘SIrIne ..-...M ‘i ("' e ———— 1 (@ ‘2rE
— [y & Gt R WRUSY) I -
q91
o5 o
.
k] b}
a
a
1
_ z _ < d v _ [_ o _ L [:]

[: [: [: 1 ; [: ;
D nez, .1
e g e s ——— _ _
o, w,
fnck. . @\1 g‘}g t
~, ., bur —e— — ——1 __ carry/borrounl
_._J [
38
_— o
o9
190158
ays cuwp loade\l Laven
8 3
C R
RESET \G l
h .— out<2..0\1
3
|
€O
108158
usr cup laoage\l Laren
_ JRUUS DU N S
E
[y .1
RESET \G J
&2
» &8
b —— . cwpcB, B>\
cwp-1<8..6)\1
B
LOCK EVEN 1CS5-10 & \G
- E
sk |
out 3elcl..M\1
out enabies~i
AESET NG T T B I T -
A
DRENING
1
c
X_FIRST=0 C‘b‘gl.
X_STEP=SIZE LAST_HODIF IED=Sun Hay O ©8:41:3% 1983
TITLE: , DATE:
currant window pointer jow bits 371483
TENGINEER: — ™~ "7 T T e PAGE:
Jaffraey T. Deutach 1 af 1
’ [5 | s i “ | a I 2 i

200

FHch. . NI

s 1
4B
P
(YT RS W
120422
- e
(2
' 5%
1
8
40
43>
B b T
< 100422
S)
ﬁ:___»?.
I » [}

1IN¢2. @ 1

BOHROW/CARRY \1

I ouve2. . B Nt

NC \R |}

[’ - T T
JR—
—‘1 ouF-1¢2. .0 1

R_FIRST =0
X_SIEP=S12ZE

UBAdING

ADDSUB

addauvb

LASY _MODIFIED-Sun Hay B8 ©VO; 42: 31 1863

TIILE: DATE:
addsub
’715-.83
EHGIIELR: — 7 oo - pace; T T
Jufiray V. Deutsch/Rich Biomsath L af L
T T [3] 2 [A

D
%P 0Ex \G o ———————— —
[sP C
18 88
nc3l. . HN\1
\7/______‘- ~ ._‘n s — - - — — WP OUTCIT.. B NG
o1se|
sy 188
swp bys 1@8x\6]
ﬂj‘ e ™
[- 181 3] dcL4 ——
RESET \G] g_ P e — out<3L. .M
4P
188
o
100150 B
Carcn .
awp usr 1ee\G ,____..____iE
ke
RESET \G I
27 ——
aP
swp m@ING l‘_\,
. A
X_FIR3VT=0 SAVED WINDOW POINTER
X-STEP=SIZE SWP
LAST_MODIFIED=Mon May © 15:18:18 1863
TITLE: DATE:
Saved Hindow Pointer
3r13/83
TNEER:) T PAGE -
Jaffray Y. Deutach/RAB tof 2

o o i SN S S RS S T B B ERSE

D31, .8\

I CETETINC- TN <
L les, 32 BIT
RES SELCL. . 0N\G /]’ e TV
P ° '_
2B
ay

RS LATOR DsG

CLOCK ODD 1€CB-5 \G

RESIAL T OE€x \G

p O % --——~-——{g

[-T% =3}

our<3atL. . e\t

LtE
X_FIRAT-@
AK_STEP=S12E

IRAHING
RESIL T LATCH
RUATCH

‘LAST_MODIF EED=tun May 9 15:34:23 1063

TITLE: DATE:
Rasult Latch A 17,83
ENGINEER: ~ 7 - T T YencE: Tt
e) . Jaffray T. Beutsch] i ofd
o 1 | .8 1 s i 4 |) | 2 I. !

P3l..24 1

P¢23..16> 1

PO1S..8» N1

PT.. 8 N

Q¢31..24 N1

Q¢23,. 16> I

pesSBy .

Qc15..8> N1

Kk «1

SBuin
190141

BN A

l
LORDX NI ——(‘/

P

91 5o

Q7..& N1

IEFINE
X_FIRST=0
X_STEP=SIZE

ABOHING

A2 BIT REGISTER
32BR

LAST_MODIFIED=Sun May © ©0: 46:33 1983

TITLE: DATE:
32 pIT REGISTER
371183
13079 (3 22 :
RICH BLOHSETH AND JEFF DEUTSCH AN
r | 1 P) - 3 T 2] 1

a | 7 & | .5] P] 3 | 2 | '
w & sp P » 20 £ .
— — ——— - — 14 .8 N
> | > >— > [> > [>
o D
200 280 aw 260 2sp ap 230
_____________ N | D - W ha! . DS D T | - -
Y7.. 0k Y11, .85 Y(1S.. @8 Yc1g. .88 Y(23..8> e Y2t o8 Q:31..2>e NI
1ap
st 0 130 120 1e 100
«31..8> N ——
| |
c - -] - c
21p
] e
i G2 . 1 . B
(Ee \Bl —— A 1 — ICe 1
e 1 T
u B
(2 LIRS § N S P - _ J— ———
it
Fii
3an
=
o wrlE ABEHIG A
X_FIRST=0 IR BIT COUNIER
X_STLP=512€ Azne
LAST_HODIFIED=Mon May 8 23:83: 50 1983
TIILE: DATE:
32 BIT COUNMTER 2/20/63
ENGINEER: ~~~— T~ T T T T T GRGE: T
RICH BLOMSETH tof 1
a | 7] 6 | 5 | 4 —I 3 l 2 I s

o e

™ e SP

——__>——l -_—>.__| __..__.} PYST- NN TAN |

299 208p amw

>1 _‘—>1__ o —__“jj_ QLS. . @ eI

L4P
13 12p

Pc1S.. @ I
o SN | .
< H— <

H 15 l 6P ¥4
Faa Q2o e oy Foa Ol -
s<2..8 \I e e .. > %>
190426 199126 129
? b, 2w, R _Lum. T o}
CEw — %8 S
3 ‘atj‘: {‘; f T casnl
P 1 L >
2 e y
[IR §
REFINE _LBAHING
X_F IRST-@ 18 BIT COUNTER

X_STEP=SIZE 16hc
LAST _MODIFIED=Sun May B8 ©9:50:23 1983

TITLE: . . {oATE:
16 BIT COUNTER Ir42-63

ERGINEER; 77 7 v 0 T T T
RICH BLOMSETH ard Juff Deutach Lol

1) | s 1 4 I 3 | 2] 1

APPENDIX F. DAPL MICROCODE LISTING

I

E 1

e RISC/E Il Phase 3 Decode RAM microcode.
L 3 J

ss 4/18/83

DESCRIPTION

MICROMEMORY_IS 256 WORDS_BY 52 BITS;
INTERLIST HEX;

NUMBER_BITS HIGHTOLOW;

DEFINE true AS 1.;
DEFINE false AS 0.;

FIELDS pclbToRbusOE WIDTH 1 DEFAULT 0.,
pecbToRbusOE WIDTH 1 DEFAULT 0.,
imiShortimmed WIDTH 1 DEFAULT 0,
imiLonglmmed WIDTH 1 DEFAULT 0.,
ragenRset WIDTH 1 DEFAULT 0,
sregSel WIDTH 1 DEFAULTO,
calliOpcode WIDTH 1 DEFAULT 0.,
forwardEnable WIDTH 1 DEFAULT 1,
pipeControl2 WIDTH 1 DEFAULT 0.
WITH (phase6Write == 0.,

noPhase6Write = 1.),
pipeControll0 WIDTH 2 DEFAULT 0.
WITH (normal = 0.,

suspendl == 2., (s aligned load & store s)

suspend?2 = 3.), (* unaligned load & store *)
spare2 WIDTH 2 DEFAULT 0.,
shisel WIDTH 2 DEFAULT 0.
WITH (shIRbus = 0.,

shIRfO == 1.,

shIRf1 = 2,,

shllm = 3.),
shASel WIDTH 2 DEFAULT L
WITH (shARbaus = 0.,

shARfl = 1.,

shAIm = 2.),
spare3 WIDTH 1 DEFAULT 0.,
sreglE WIDTH 1 DEFAULT 0.,
aluAlE WIDTH 1 DEFAULT 1,
aluBIE WIDTH 1 DEFAULT 1,
shILE WIDTH 1 DEFAULT 1.,
shAE WIDTH 1 DEFAULT 1,
shiE WIDTH 1 DEFAULT 1,
shSigned WIDTH 1 DEFAULT 0,
spare4 WIDTH 3 DEFAULT 0.,

L 2 J

e+ The following signals are latched by the Phase 4 latch for

ss use during phase 4.
8

shS WIDTH 6 DEFAULT 0., (sss?%s%)

shRight WIDTH 1 DEFAULT 0,
aluFa WIDTH 4 DEFAULT 0.
WITH (aluBedAdd = 0.,

aluBedSub == 1.,

aludBcdSubl = 2.,

aluBcdNegB = 3.,

aluAdd = 4.,

aluSub = §.,

aluSubl = 6§,

aluNegB = 7,

aluXnor == 8.,

aluXor = 9.,

aluOr = 10,

aluA = 11,

alulNotB == 12.,

aluB = 13,

aluAnd = 14,

alulLow = 15.},
sysCwphFan WIDTH 3 DEFAULT 7.
WITH (sysCwphLoad = 0.,

sysCwphDecr = 4,

sysCwphClear = 5.,

sysCwphlner = 6.,

sysCwphHold = 7.),
ustCwphFn WIDTH 3 DEFAULT 7.
WTITH (usrCwphLoad = 0.,

usrCwphDecr = 4.,

usrCwphClear == §.,

usrCwphlncr == 6.,

usrCwphHold = 7.),
cwplFn WIDTH 2 DEFAULT 2.
WITH (cwpilner = 1,

ewplHold = 2.,

ewplDecr = 3.),
resSel WIDTH 2 DEFAULT Q
WITH (resultAlu = 0,

resultChas = 1,,

resultRf]l == 2,

resultShift = 3.),
resLatchLdWIDTH 1 DEFAULT 1,
aluCarryln WIDTH 1 DEFAULT 0.,
spared WIDTH 1 DEFAULT 0.;

MICROPROGRAM

(* NOP *)
noP haseS Write;
noPhase6Write;
noPhaseS Write;
noPhase6Write;

(» ADD *)
aluAdd, resuitAlu;
aluAdd, resaitAlu;
aluAdd, resultAlu;

aluAdd, resuitAlu;
(* ADDC)
aluAdd, resuitAlu;
aluAdd, resultAlu;
aluAdd, resuitAlu;
aluAdd, resultAlu;
(+ SUB *)
aluSub, resultAln;
aluSubl, resultAlu;
aluSub, resuitAlu;
aluSubl, resultAln;
(* SUBC *)
aluSaub, resultAln;
alaSubl, resultAly;
aluSub, resuitAlu;
aluSubl, resultAlu;
(* AND ¥)
aluAnd, resultAlu;
aluAnd, resultAlu;
aluAnd, resultAlu;
aluAnd, resaltAlu;
(*OR %)
aluOr, resultAly;
alaOr, resultAlu;
aluOr, resultAlu;
aluOr, resuitAlu;
(* XOR *)
aluXor, resuitAlu;
aluXor, resultAlu;
aluXor, resultAlu;
aluXot, resultAlu;
(* SRL ¥)
shiR 0, shART!1, shRight = true, shSigned == false, resultShift;
shIRf0, shARTf1, shRight = true, shSigned == false, resultShift;
shIR0, shAR{f1, shRight == true, shSigned == false, resultShift;
shIR (0, shAR{1, shRight == true, shSigned == false, resultShift;
(* SRA ¢)
shIR{0, shAR{1, shRight == true, shSigned == true, resultShift;
shIR10, shAR(f1, shRight == true, shSigned = true, resuitShift;
shIR {0, shAR(1, shRight == true, shSigned == true, resultShift;
shIR [0, shAR(1, shRight = true, shSigned == true, resuitShift;
(s SLX #)
shIR10, shARTM1, shRight == false, shSigned == false, resultShift;
shIR0, shAR(f]1, shRight == false, shSigned == false, resultShift;
shiIR{0, shAR{1, shRight == false, shSigned == false, resultShift;
shIR10, shAR(], shRight == false, shSigned == false, resultShift;

8

¢ RISC/E 0 Phase 4 Decode RAM microcode.
L 2 J

ss 4/17/83

DESCRIPTION

MICROMEMORY_IS 128 WORDS_BY 30 BITS;
INTERLIST HEX;

NUMBER_BITS HIGHTOLOW;

DEFINE true AS 1.;
DEFINE false AS 0.;

FIELDS sparel WIDTH 3 DEFAULT 0.,
camSei WIDTH 1 DEFAULT 0.
WITH (camPC = 0.,

camRbus = 1.),
pswisei WIDTH 1 DEFAULT 0.
WITH (pswSys == 0,

pswin = 1.),
cwpiSel WIDTH 2 DEFAULT 0.
WITH (cwpiln == 0.,

cwpiSys = 2.,

ewpiUsr = 3.),
swpSel WIDTH 1 DEFAULT 0.
WITH {(swpSys = 0.,

swpUsr == 1.),
calLE WIDTH 1 DEFAULT 0,
loadPC WIDTH 1 DEFAULT 0,
peebToCbusOE WIDTH 1 DEFAULT 0,
regAsMemEnable WIDTH 1 DEFAULT 0.,
weCache WIDTH 1 DEFAULT 0,
dlE WIDTH 1 DEFAULT 0,
csRegfile WIDTH 1 DEFAULT 1.,

shOLE WIDTH 1 DEFAULT O,
aluOutLatck WIDTH 1 DEFAULT 1,
cwplCE WIDTH 1 DEFAULT O,
swpOE WIDTH 1 DEFAULT 0,
sparel WIDTH 1| DEFAULT 0.,
resaltOE WIDTH 1 DEFAULT 1,

pswOE WIDTH 1 DEFAULT 0,

pswSysFlagsLoad WIDTH 1 DEFAULT 0.,
pswAluFlagsLoad WIDTH 1 DEFAULT 0.,
sysCwpll[E WIDTH 1 DEFAULT 0.,
usrCwpilE WIDTH 1| DEFAULT 0.,
sysCwphOE WIDTH 1 DEFAULT 0,
astCwphOE WIDTH 1 DEFAULT 0.,
swpSyslE WIDTH 1 DEFAULT 0.,

swpUsrlE WIDTH 1 DEFAULT 0,;

MICROPROGRAM
(* NOP s)

(* ADD *)
regAsMemEnable == true, aluOutL atch == true;
regAsMemEnable == true, aluOutL atch == true;
(* ADDC #)
regAsMemEnable == true, aluOutL atch == true;
regAsMemEnable == true, algOutl atch = true;
(+ SUB ¥)
regAsMemEnable == true, aluQutL atch == true;
regAsMemEnable == true, alaQutl atch == true;
{» SUBC #)
regAsMemEnable == true, alaQutL atch == true;
regAsMemEnable = true, aluOutL atch = true;
(+ AND *)
regAsMemEnable == true, algOutL atch == true;
regAsMemEnable = true, aluOutl.atch == true;
(* OR #)
regAsMemEnable == true, aluOutL atch = true;
regAsMemEnable == true, alaOutl atch = true;
(* XOR +)
regAsMemEnable == true, aluOutL ateh == true;
regAsMemEnable == true, aluOutlatch == true;
(* SRL)
regAsMemEnable == true, shOLE == true;
regAsMemEnable = true, shOLE == true;
(* SRA ¥)
regAsMemEnable = true, shOLE == true;
regAsMemEnable == true, shOLE == true;
(* SLX ¢)
regAsMemEnable == true, shOLE == true;
re emEnable == true, shOLE == true;
(» LDHI #)
regAsMemEnable == false, shOLE = true;
regAsMemEnable == false, shOLE == true;
(» CALLX *#)
regAsMemEnable == true, aluOutl atch == true, shOLE == true;
regAsMemEnable == true, aluOutLatch == true, shOLE == true;

